【题目】如图,在等边三角形ABC中,AD是∠BAC的平分线,E为AD上一点,以BE为一边且在BE下方作等边三角形BEF,连接CF.
(1)求证:△ABE≌△CBF;
(2)求∠ACF的度数.
【答案】(1)见解析;(2)∠ACF=90°.
【解析】
(1)根据等边三角形的性质可得AB=BC,∠ABE+∠EBC=60°,BE=BF,∠CBF+∠EBC=60°,从而证出∠ABE=∠CBF,然后利用SAS即可证出结论;
(2)根据等边三角形的性质和角平分线的定义可得∠BAE=30°,∠ACB=60°,然后根据全等三角形的性质可得∠BCF=∠BAE=30°,从而求出结论.
(1)证明:∵△ABC是等边三角形,
∴AB=BC,∠ABE+∠EBC=60°,
∵△BEF是等边三角形,
∴BE=BF,∠CBF+∠EBC=60°,
∴∠ABE=∠CBF,
在△ABE和△CBF,
,
∴△ABE≌△CBF(SAS);
(2)解:∵等边△ABC中,AD是∠BAC的角平分线,
∴∠BAE=30°,∠ACB=60°,
∵△ABE≌△CBF,
∴∠BCF=∠BAE=30°,
∴∠ACF=∠BCF+∠ACB=30°+60°=90°.
科目:初中数学 来源: 题型:
【题目】一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是( )
A. 甲乙两地相距1200千米
B. 快车的速度是80千米∕小时
C. 慢车的速度是60千米∕小时
D. 快车到达甲地时,慢车距离乙地100千米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx-5的经过点(-2,-15)、点(2,1).
(1)求抛物线的表达式;
(2)请用配方法求抛物线顶点A的坐标;
(3)已知点M坐标为(2,—1).设动点P、Q分别在抛物线和对称轴上,当以A,P,Q,M为顶点的四边形是平行四边形时,求P、Q两点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解不等式组
请结合题意填空,完成本题的解答.
(1)解不等式①,得________;
(2)解不等式②,得________;
(3)把不等式①和②的解集在数轴上表示出来;
(4)原不等式组的解集为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与轴交于、两点,与轴交于点.
(1)请直接写出A、B、C三点的坐标:
A B C
(2)点P从点A出发,在线段AB上以每秒3个单位长度的速度向点B运动,同时点Q 从点B出发,在线段BC上以每秒1个单位长度的速度向点C运动.其中一个点到达终点时,另一个点也停止运动.设运动的时间为t(秒),
① 当t为何值时,BP=BQ?
② 是否存在某一时刻t,使△BPQ是直角三角形?若存在,请求出所有符合条件的t的值,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在平面直角坐标系中,二次函数y=x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.
(1)填空:b= ,c= ;
(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;
(3)点M在抛物线上,且△AOM的面积与△AOC的面积相等,求出点M的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,位于第二象限的点在反比例函数的图像上,点与点关于原点对称,直线经过点,且与反比例函数的图像交于点.
(1)当点的横坐标是-2,点坐标是时,分别求出的函数表达式;
(2)若点的横坐标是点的横坐标的4倍,且的面积是16,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)在平面直角坐标系中A(5,0),B为y轴上任意一点,以点B为直角顶点作等腰Rt△ABC(点A、B、C按顺时针方向排列),请探究点C是否在一确定的直线上;
(2)在平面直角坐标系中,A(﹣1,0),B(4,2m),连接AB,将AB绕点B逆时针旋转90°到CB,请探究点C是否在一确定的直线上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在菱形ABCD中,AB=,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.
(1)求证:BE=DF;
(2)当t= 秒时,DF的长度有最小值,最小值等于 ;
(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com