精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,抛物线轴交于两点,与轴交于点

(1)请直接写出ABC三点的坐标:

A B C

(2)点P从点A出发,在线段AB上以每秒3个单位长度的速度向点B运动,同时点Q 从点B出发,在线段BC上以每秒1个单位长度的速度向点C运动.其中一个点到达终点时,另一个点也停止运动.设运动的时间为t(秒),

① 当t为何值时,BPBQ

② 是否存在某一时刻t,使△BPQ是直角三角形?若存在,请求出所有符合条件的t的值,若不存在,请说明理由.

【答案】(1)A(2,0) ,B(4,0), C(0, );(2)t=;(3)t=或t=

【解析】试题分析:1)由抛物线的解析式中的y=0可求出BA点的坐标,x=0可求出C的坐标;

(2)①分别用含t的代数式表示BPBQ,根据BP=BQ求解即可;

②根据余弦函数,可得关于t的方程,根据解方程,可得答案.

试题解析:(1)令y=0,则,解得:x1=-2x2=4

A-2,0),B4,0

x=0,则x=-3

C0-3

2①∵A-2,0),B4,0

AB=6

BP=6-3tBQ=t

BP=BQ

6-3t =t

解得:t=

②如图,

RtOBC中,cosB=

设运动时间为t秒,则AP=3tBQ=t

PB=6-3t

当∠PQB=90°时,cosB=,即

化简,得17t=24,解得t=

当∠BPQ=90°时,cosB=

化简,得19t=30,解得t=

综上所述:t=t=时,以PBQ为顶点的三角形为直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,∠A=30°,∠B=60°。

(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹)

(2)连接DE,求证:△ADE≌△BDE。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰三角形的两边长分别是511,则这个等腰三角形的周长为(  )

A. 21 B. 16 C. 27 D. 2127

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Px轴的距离为2,到y轴的距离为3,且在第四象限,则P点坐标是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(

A. 对应边都成比例的多边形相似 B. 对应角都相等的多边形相似

C. 等边三角形都相似 D. 矩形都相似

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点直径的延长线上,点上,且AC=CD,∠ACD=120°.

(1)求证: 的切线;

(2)若的半径为2,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】第一个等式是3=2+1,第二个等式是5=3+2,第三个等式是9=5+4,第四个等式是17=9+8,第五个等式是33=17+16…观察并猜想第七个等式是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一艘快艇从A码头到B码头顺流行驶,同时一艘游船从B码头出发逆流行驶.已知,AB两码头相距140千米,快艇在静水中的平均速度为67千米/小时,游船在静水中的平均速度为27千米/小时,水流速度为3千米/小时

1请计算两船出发航行30分钟时相距多少千米?

2如果快艇到达B码头后立即返回,试求快艇在返回的过程中需航行多少时间两船恰好相距12千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案