精英家教网 > 初中数学 > 题目详情

【题目】Px轴的距离为2,到y轴的距离为3,且在第四象限,则P点坐标是________

【答案】(3,-2)

【解析】

根据题意可知P点坐标为(3,-2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,PA,PB分别与⊙O相切于点A,B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.

(1)求证:OM = AN;

(2)若⊙O的半径R = 3,PA = 9,求OM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】认真阅读下面的材料,完成有关问题.

材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示53在数轴上对应的两点之间的距离;|5+3|=|5﹣﹣3|,所以|5+3|表示5﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点AB在数轴上分别表示有理数ab,那么AB之间的距离可表示为|a﹣b|

问题(1):点ABC在数轴上分别表示有理数﹣5﹣13,那么AB的距离是      

AC的距离是      . (直接填最后结果).

问题(2):点ABC在数轴上分别表示有理数x﹣21,那么AB的距离与AC的距离之和可表示为        (用含绝对值的式子表示).

问题(3):利用数轴探究:①找出满足|x﹣3|+|x+1|=6x的所有值是        

②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是      ;当x的值取在       的范围时,|x|+|x﹣2|的最小值是      

问题(4):求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】实践操作如图,∠△ABC是直角三角形,∠ACB=90,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)

①作∠BAC的平分线,交BC于点0

②以点0为圆心,OC为半径作圆.综合运用在你所作的图中,

(1)直线AB与⊙0的位置关系是

(2)证明:BA·BD=BC·BO;

(3)若AC=5,BC=12,求⊙0的半径

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,DE⊥AB于点E.

(1)求证:△ACD≌△AED

(2)若AC=5,△DEB的周长为8,求△ABC的周长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A为数轴上表示2的点,将点A沿数轴向左平移7个单位到点B,再由B向右平移6个单位到点C,则点C所表示的数是(
A.11
B.1
C.2
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴交于两点,与轴交于点

(1)请直接写出ABC三点的坐标:

A B C

(2)点P从点A出发,在线段AB上以每秒3个单位长度的速度向点B运动,同时点Q 从点B出发,在线段BC上以每秒1个单位长度的速度向点C运动.其中一个点到达终点时,另一个点也停止运动.设运动的时间为t(秒),

① 当t为何值时,BPBQ

② 是否存在某一时刻t,使△BPQ是直角三角形?若存在,请求出所有符合条件的t的值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市在高架快速公路施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF(如图所示),已知立杆AB的高度是3米,从侧面D点测到路况警示牌顶端C点和底端B点的仰角分别是60°45°,求路况警示牌宽BC的值(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现定义运算对于任意有理数ab都有ababb232×33请根据以上定义解答下列各题

1 2(-3)=___________x(-2)=___________

2 化简[(-x3] (-2);

3 x 3(-x),x的值

查看答案和解析>>

同步练习册答案