【题目】如图,已知在平面直角坐标系中,A(0,﹣1)、B(﹣2,0)C(4,0)
(1)求△ABC的面积;
(2)在y轴上是否存在一个点D,使得△ABD为等腰三角形,若存在,求出点D坐标;若不存,说明理由.
【答案】(1)3;(2)存在,点D坐标为(0,),(0,-1-),(0,1).
【解析】
(1)根据AO=1,BC=6,求得△ABC的面积;
(2)分AB为底边和腰两种情况进行分类讨论,i)以AB为底边,设D(0,a),则AD=1+a,OD=a,根据BD=AD=1+a,∠BOD=90°,可得Rt△BOD中,OD2+OB2=BD2,即a2+22=(a+1)2,进而得出点D坐标;ii)以AB为腰,求出AB的长,在y轴即可确定点D的坐标.
(1)∵A(0,-1)、B(-2,0)、C(4,0),
∴AO=1,BC=6,
∴△ABC的面积=×6×1=3;
(2)存在一个点D,使得△ABD是等腰三角形.
i)如图所示,以AB为底边,
设D(0,a),则AD=1+a,OD=a,
∵BD=AD=1+a,∠BOD=90°,
∴Rt△BOD中,OD2+OB2=BD2,
∴a2+22=(a+1)2,
解得a=,
∴D(0,);
ii) 如图所示,以AB为腰,
∵A(0,﹣1)、B(﹣2,0)
∴BO=2,AO=1,
∵∠BOA=90゜
∴AB=,
若AB=AD,则有AD=
∴D点坐标为(0,-1-),
若AB=BD,则OD=OA=1,
∴D点坐标为(0,1).
故存在一个点D,使得△ABD是等腰三角形.D点坐标为(0,),(0,-1-),(0,1).
科目:初中数学 来源: 题型:
【题目】在边长为1的小正方形网格中,△AOB的顶点均在格点上.
(1)B点关于y轴的对称点坐标为 ;
(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;
(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N(下面是推理过程,请你填空).
解:∵∠BAE+∠AED=180°(已知)
∴ ∥ (同旁内角互补,两直线平行)
∴∠BAE= (两直线平行,内错角相等)
又∵∠1=∠2
∴∠BAE﹣∠1= ﹣
即∠MAE=
∴ ∥ (内错角相等,两直线平行)
∴∠M=∠N(两直线平行,内错角相等)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.
某校抽查的学生文章阅读的篇数统计表
文章阅读的篇数(篇) | 3 | 4 | 5 | 6 | 7及以上 |
人数(人) | 20 | 28 | m | 16 | 12 |
请根据统计图表中的信息,解答下列问题:
(1)求被抽查的学生人数和的值;
(2)求本次抽查的学生文章阅读篇数的中位数和众数;
(3)若该校共有800名学生,根据抽查结果估计该校学生在这一周内文章阅读的篇数为4篇的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的矩形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D,旋转角为.
(1)当点D′恰好落在EF边上时,则旋转角α的值为________度;
(2)如图2,G为BC中点,且0°<α<90°,求证:GD′=E′D;
(3)小长方形CEFD绕点C顺时针旋转一周的过程中,是否存在旋转角α,使△DCD′与△CBD′全等?若能,直接写出旋转角α的值;若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(-1,0).设t=a+b+1,则t值的变化范围是( )
A. 0<t<1 B. 0<t<2 C. 1<t<2 D. -1<t<1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线,
(1)如图1,点在直线上的左侧,直接写出,和之间的数量关系是 .
(2)如图2,点在直线的左侧,,分别平分,,直接写出和的数量关系是 .
(3)如图3,点在直线的右侧,仍平分,,那么和有怎样的数量关系?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com