精英家教网 > 初中数学 > 题目详情

【题目】已知⊙O中,弦AB=AC,点P是∠BAC所对弧上一动点,连接PA,PB.
(1)如图①,把△ABP绕点A逆时针旋转到△ACQ,连接PC,求证:∠ACP+∠ACQ=180°;
(2)如图②,若∠BAC=60°,试探究PA、PB、PC之间的关系.
(3)若∠BAC=120°时,(2)中的结论是否成立?若是,请证明;若不是,请直接写出它们之间的数量关系,不需证明.

【答案】
(1)

证明:如图①,连接PC.

∵△ACQ是由△ABP绕点A逆时针旋转得到的,

∴∠ABP=∠ACQ.

由图①知,点A、B、P、C四点共圆,

∴∠ACP+∠ABP=180°(圆内接四边形的对角互补),

∴∠ACP+∠ACQ=180°(等量代换);


(2)

证明:解:PA=PB+PC.理由如下:

如图②,连接BC,延长BP至E,使PE=PC,连接CE.

∵弦AB=弦AC,∠BAC=60°,

∴△ABC是等边三角形(有一内角为60°的等腰三角形是等边三角形).

∵A、B、P、C四点共圆,

∴∠BAC+∠BPC=180°(圆内接四边形的对角互补),

∵∠BPC+∠EPC=180°,

∴∠BAC=∠CPE=60°,

∵PE=PC,

∴△PCE是等边三角形,

∴CE=PC,∠E=∠ECP=∠EPC=60°;

又∵∠BCE=60°+∠BCP,∠ACP=60°+∠BCP,

∴∠BCE=∠ACP(等量代换).

在△BEC和△APC中,

∴△BEC≌△APC(SAS),

∴BE=PA,

∴PA=BE=PB+PC;


(3)

证明:若∠BAC=120°时,(2)中的结论不成立. PA=PB+PC.理由如下:

如图③,在线段PC上截取PQ,使PQ=PB,过点A作AG⊥PC于点G.

∵∠BAC=120°,∠BAC+∠BPC=180°,

∴∠BPC=60°.

∵弦AB=弦AC,

∴∠APB=∠APQ=30°.

在△ABP和△AQP中,

∴△ABP≌△AQP(SAS),

∴AB=AQ,PB=PQ(全等三角形的对应边相等),

∴AQ=AC(等量代换).

在等腰△AQC中,QG=CG.

在Rt△APG中,∠APG=30°,则AP=2AG,PG= AG.

∴PB+PC=PG﹣QG+PG+CG=PG﹣QG+PG+QG=2PG=2 AG,

PA=2 AG,即 PA=PB+PC.


【解析】(1)如图①,连接PC.根据“内接四边形的对角互补的性质”即可证得结论;(2)如图②,通过作辅助线BC、PE、CE(连接BC,延长BP至E,使PE=PC,连接CE)构建等边△PCE和全等三角形△BEC≌△APC;然后利用全等三角形的对应边相等和线段间的和差关系可以求得PA=PB+PC;(3)如图③,在线段PC上截取PQ,使PQ=PB,过点A作AG⊥PC于点G.利用全等三角形△ABP≌△AQP(SAS)的对应边相等推知AB=AQ,PB=PG,将PA、PB、PC的数量关系转化到△APC中来求即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,点P是BC的中点,仅用无刻度的直尺按要求画图:
(1)在图①中画出AD的中点M;
(2)在图②中画出对角线AC的三等分点E,点F.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.

种类

A

B

C

D

E

出行方式

共享单车

步行

公交车

的士

私家车

根据以上信息,回答下列问题:

(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;

(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;

(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.
(1)求直线AB的解析式;
(2)当t为何值时,△APQ与△AOB相似?
(3)当t为何值时,△APQ的面积为 个平方单位?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,AD是∠BAC的平分线.

(1)尺规作图:过点D作DE⊥AC于E;
(2)求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(方案设计题)如图是人民公园中的荷花池现要测量荷花池岸边树A与树B间的距离如果直接测量比较困难请你根据所学知识以卷尺和测角仪为测量工具设计两种不同的测量方案并画出图形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知EFG≌△NMH, FM是对应角.

1)写出相等的线段与相等的角;

2)若EF=2.1cmFH=1.1cmHM=3.3cm,求MNHG的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD中,ABDC,连接BD,BE平分∠ABD,BEAD,EBC和∠DCB的角平分线相交于点F,若∠ADC=110°,则∠F的度数为(  )

A. 115° B. 110° C. 105° D. 100°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2+2x+a﹣2=0.
(1)若该方程有两个不相等的实数根,求实数a的取值范围;
(2)当该方程的一个根为1时,求a的值及方程的另一根.

查看答案和解析>>

同步练习册答案