如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合.三角板的一边交CD于点F,另一边交CB的延长线于点G.
![]()
(1)求证:EF=EG;
(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;
(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a,BC=b,请直接写出
的值.
(
1)证明见解析;(2)成立;证明见解析;(3)
.
【解析】(1)∵∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,∴∠DEF=∠GEB,
又∵ED=BE,∴Rt△FED≌Rt△GEB(ASA),∴EF=EG;
(2)成立,
如图,过点E分别作BC、CD的垂线,垂足分别为H、I,则EH=EI,∠HEI=90°,
![]()
∵∠GEH+∠HEF=90°,∠IEF+∠HEF=90°,∴∠IEF=∠GEH,∴Rt△FEI≌Rt△GEH(ASA),
∴EF=EG;
(3)如图,过点E分别作BC、CD的垂线,垂足分别为M、N,则∠MEN=90°,
![]()
∴EM∥AB,EN∥AD,
∴△CEN∽△CAD,△CEM∽△CAB,
∴
,
,
∴
,即
,
∵∠NEF+∠FEM=∠GEM+∠FEM=90°,∴∠GEM=∠FEN,∵∠GME=∠FNE=90°,∴△GME∽△FNE,
∴
,∴
.
科目:初中数学 来源: 题型:
如图,是用火柴棒拼成的图形,第1个图形需3根火柴棒,第2个图形需5根火柴棒,第3个图形需7根火柴棒,第4个图形需 根火柴棒,……,则第
个图形需 根火柴棒。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
一组数2,1,3,x,7,y,23,…,如果满足“从第三个数起,若前两个数依次为a、b,则紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为( )
(A)-9 (B)-1 (C)5 (D)21
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,矩形ABCD的顶点A、B、C的坐标分别为(0,5)(0,2)(4,2),直线l的解析式为y = kx+5-4k(k > 0).
![]()
(1)当直线l经过点B时,求一次函数的解析式;
(2)通过计算说明:不论k为何值,直线l总经过点D;
(3)直线l与y轴交于点M,点N是线段DM上的一点, 且△NBD为等腰三角形,试探究:
①当函数y = kx+5-4k为正比例函数时,点N的个数有 个;
②
点M在不同位置时,k的取值会相应变化,点N的个数情况可能会改变,请直接写出点N所有不同的个数情况以及相应的k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
对于实数x,我们规定
表示大于
x的
最小整数,如
,现对64进行如下操作:
,这样对64只需进行4次操作后变为2,类似地,
只需进行4次操作后变为2的所有正整数中,
最大的是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
在新农村建设中,某乡镇决定对一段长600
0米的公路进行修建改造。根据需要,该工程在实际施工时增加了施工人员,每天修建的公路比原计划增加了50%,结果
提前4天完成任务。设现在每天修建x米,那么下面所列方程中正确的是【 】
。
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,正方形ABCD的边长为4,点E,F分别为边AB,BC上的动点,且DE=DF.若△DEF的面积为y,BF的长为x,则表示y与x的函数关系的图象大致是( )
![]()
![]()
![]()
A.![]()
![]()
B.![]()
![]()
C.![]()
![]()
D.![]()
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
已知二次函数![]()
, 在![]()
和![]()
时的函数值相等.
(
1)求二次函数的解析式;
(2)若一次函数![]()
的图象与二次函数的图象都经过点![]()
,求![]()
和![]()
的值;
(3)
设二次函数的图象与![]()
轴交于点![]()
(点![]()
在点![]()
的左侧),将二次函数的图象在点![]()
间的部分(含点![]()
和点![]()
)向左平移![]()
个单位后得到的图象记为![]()
![]()
,同时将(2)中得到的直线![]()
向右平移![]()
个单位.请结合图象回答:当平移后的直线与图象![]()
有公
共点时,![]()
的取值范围
.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com