精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD的边长为4,点E,F分别为边AB,BC上的动点,且DE=DF.若△DEF的面积为y,BF的长为x,则表示y与x的函数关系的图象大致是(    )

A.  B.  C.  D.


D.

【解析】

故选D.

考点:1.动点问题的函数图象分析;2.特殊元素法和转换思想的应用.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,在矩形ABCD中,AB=2,BC=4,⊙D的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O重合,绕着O点转动三角板,使它的一条直角边与⊙D切于点H,此时两直角边与AD交于E,F两点,则EH的值为         

查看答案和解析>>

科目:初中数学 来源: 题型:


如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合.三角板的一边交CD于点F,另一边交CB的延长线于点G.

(1)求证:EF=EG;

(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;

(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a,BC=b,请直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:


假期到了,学校组织19名女教师去外地培训,住宿时有2人间和3人间可供安排,若每个房间都要住满,共有几种安排方案(  )

A.5种         B.4种        C.3种        D.2种

查看答案和解析>>

科目:初中数学 来源: 题型:


郑州市花卉种植专业户王有才承包了30亩花圃,分别种植康乃馨和玫瑰花,有关成本、销售额见下表:

种植种类

成本(万元/亩)

销售额(万元/亩)

康乃馨

2.4

3

玫瑰花

2

2.5

(1)2012年,王有才种植康乃馨20亩、玫瑰花10亩,求王有才这一年共收益多少万元?(收益=销售额-成本)

(2)2013年,王有才继续用这30亩花圃全部种植康乃馨和玫瑰花,计划投入成本不超过70万元.若每亩种植的成本、销售额与2012年相同,要获得最大收益,他应种植康乃馨和玫瑰花各多少亩?

(3)已知康乃馨每亩需要化肥500kg,玫瑰花每亩需要化肥700kg,根据(2)中的种植亩数,为了节约运输成本,实际使用的运输车辆每次装载化肥的总量是原计划每次装载总量的2倍,结果运输全部化肥比原计划减少2次.求王有才原定的运输车辆每次可装载化肥多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:


甲、乙两车从A地驶向B地,甲车比乙车早行驶2h,并且在途中休息了0.5h,休息前后速度相同,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.

(1)求出图中a的值;

(2)求出甲车行驶路程y(km)与时间x(h)的函数表达式,并写出相应的x的取值范围;

(3)当甲车行驶多长时间时,两车恰好相距40km.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图所示,点A是双曲线y=(x>0)上的一动点,过A作AC⊥y轴,垂足为点C,作AC的垂直平分线双曲线于点B,交x轴于点D.当点A在双曲线上从左到右运动时,四边形ABCD的面积(  )

A.逐渐变小             B.由大变小再由小变大

C.由小变大再有大变小   D.不变

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式。已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m。

(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围);

(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;

(3)若球一定能越过球网,又不出边界,求二次函数中二次项系数a的最大值。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.

查看答案和解析>>

同步练习册答案