【题目】如图,已知DC∥FP,∠1=∠2,∠FED=28°,∠AGF=80°,FH平分∠EFG.
(1)说明:DC∥AB;
(2)求∠PFH的度数.
【答案】
(1)解:∵DC∥FP,
∴∠3=∠2,
又∵∠1=∠2,
∴∠3=∠1,
∴DC∥AB;
(2)解:∵DC∥FP,DC∥AB,∠DEF=28°,
∴∠DEF=∠EFP=28°,AB∥FP,
又∵∠AGF=80°,
∴∠AGF=∠GFP=80°,
∴∠GFE=∠GFP+∠EFP=80°+28°=108°,
又∵FH平分∠EFG,
∴∠GFH= ∠GFE=54°,
∴∠PFH=∠GFP﹣∠GFH=80°﹣54°=26°.
【解析】(1)由DC∥FP知∠3=∠2=∠1,可得;(2)由(1)利用平行线的判定得到AB∥PF∥CD,根据平行线的性质得到∠AGF=∠GFP,∠DEF=∠EFP,然后利用已知条件即可求出∠PFH的度数.
科目:初中数学 来源: 题型:
【题目】附加题:已知数轴上两点A,B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A,点B的距离相等,求点P对应的数;
(2)数轴上是否存在点P,使点P到点A,点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;
(3)点A,点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=120°.
(1)求这条抛物线的表达式;
(2)连接OM,求∠AOM的大小;
(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在热气球上A处测得塔顶B的仰角为52°,测得塔底C的俯角为45°,已知A处距地面98米,求塔高BC.(结果精确到0.1米)
【参考数据:sin52°=0.79,cos52°=0.62,tan52°=1.28】
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列文字:我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式,例如由图a可以得到a2+3ab+2b2=(a+2b)(a+b).请回答下列问题:
(1)写出图b中所表示的数学等式是 .
(2)试画出一个长方形,使得用不同的方法计算它的面积时,能得到2a2+3ab+b2=(2a+b)(a+b).
(3)课本68页练一练,有一题:如图c,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x、y的多少表示) .
(4)通过上述的等量关系,我们可知:
当两个正数的和一定时,它们的差的绝对值越小则积越(填“大”或“小”).
当两个正数的积一定时,它们的差的绝对值越小则和越(填“大”或“小”).
(5)利用上面得出的结论,对于正数x,求:
①代数式:2x+ 的最小值是;
②代数式:x(6﹣x)的最大值是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com