【题目】如图,在平行四边形中,过点作,垂足为,连接,为线段上一点,且.
(1)求证:;
(2)若,,,求的度数.
【答案】(1)见解析;(2)
【解析】
(1)易证∠ADF=∠CED和∠AFD=DCE,即可证明△ADF∽△DEC.
(2)根据平行四边形对边相等可求得CD的长,根据△ADF∽△DEC,利用对应边成比例即可求得DE的长,
(1)∵平行四边形ABCD中,AB∥CD,AD∥BC,
∴∠B+∠DCE=180°,∠ADF=∠CED,
∵∠B=∠AFE,∠AFD+∠AFE=180°,
∴∠AFD=∠DCE,
∴△ADF∽△DEC;
(2)∵四边形ABCD为平行四边形,
∴CD=AB=8,AD∥BC,,
∴AE⊥AD,
∵△ADF∽△DEC,
∴,即,
∴DE=12,
∵在Rt△ADE中,∠EAD=90°,,DE=12,
∴,
∵,
∴.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,P为AB上一点,且点P不与点A重合,过点P作PE⊥AB交AC边于E点,点E不与点C重合,若AB=10,AC=8,设AP的长为x,四边形PECB的周长为y,
(1)试证明:△AEP∽△ABC;
(2)求y与x之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OA=4,C是射线OA上一点,以O为圆心,OA的长为半径作使∠AOB=152°,P是上一点,OP与AB相交于点D,点P′与P关于直线OA对称,连接CP,
尝试:
(1)点P′在所在的圆 (填“内”“上”或“外”);
(2)AB= .
发现:
(1)PD的最大值为 ;
(2)当=2π,∠OCP=28时,判断CP与所在圆的位置关系探究当点P′与AB的距离最大时,求AP的长.(注:sin76°=cos14°=)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是( )
用水量x(吨) | 3 | 4 | 5 | 6 | 7 |
频数 | 1 | 2 | 5 | 4﹣x | x |
A. 平均数、中位数 B. 众数、中位数 C. 平均数、方差 D. 众数、方差
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形中,边长为10,.顺次连结菱形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;按此规律继续下去….则四边形的周长是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=ax+b与x轴交于点A(4,0),与y轴交于点B(0,﹣2),与反比例函数y=(x>0)的图象交于点C(6,m).
(1)求直线和反比例函数的表达式;
(2)连接OC,在x轴上找一点P,使△OPC是以OC为腰的等腰三角形,请求出点P的坐标;
(3)结合图象,请直接写出不等式≥ax+b的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某广场有一个小型喷泉,水流从垂直于地面的水管OA喷出,OA长为1.5米.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B到O的距离为3米.建立平面直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间近似满足函数关系
(1)求y与x之间的函数关系式;
(2)求水流喷出的最大高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某食品零售店为食品厂代销一种面包,未售出的面包可以退回厂家.经统计销售情况发现,当这种面包的销售单价为7角时,每天卖出160个.在此基础上.单价每提高1角时,该零售店每天就会少卖出20个面包.设这种面包的销售单价为x角(每个面包的成本是5角).零售店每天销售这种面包的利润为y角.
(1)用含x的代数式分别表示出每个面包的利润与卖出的面包个数;
(2)求x与y之间的函数关系式:
(3)当这种面包的销售单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com