【题目】如图,在菱形中,边长为10,.顺次连结菱形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;按此规律继续下去….则四边形的周长是_________.
【答案】
【解析】
根据菱形的性质,三角形中位线的性质以及勾股定理求出四边形各边长,得出规律求出即可.
∵菱形ABCD中,边长为10,∠A=60°,
设菱形对角线交于点O,
∴,
∴,,
∴,,
顺次连结菱形ABCD各边中点,
∴△AA1D1是等边三角形,四边形A2B2C2D2是菱形,
∴A1D1=A A1=AB =5,C1D1 =AC=5,A2B2=C2D2=C2B2=A2D2=AB=5,
∴四边形A2B2C2D2的周长是:5×4=20,
同理可得出:A3D3=5×,C3D3=C1D1=5,
A5D5=5,C5D5=C3D3=5,
∴四边形A2019B2019C2019D2019的周长是:
故答案为:
科目:初中数学 来源: 题型:
【题目】如图,有四张质地完全相同的卡片,正面分别写有四个角度,现将这四张卡片洗匀后,背面朝上.
(1)若从中任意抽取--张,求抽到锐角卡片的概宰;
(2)若从中任意抽取两张,求抽到的两张角度恰好互补的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC的边长为5,点D,P,L分别在边AB,BC,CA上,AD=BP=CL=x(x>0).按如图方式作边长均为3的等边△DEF,△PQR,△LMN,点F,R,N分别在射线DA,PB,LC上.
①当边DE,PQ,LM与△ABC的三边围成的图形是正六边形时,x=_____;
②当点D与点B重合时,EF,QR,MN所围成的三角形的周长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线分别交x轴、y轴于点A(2,0)、B(0,4),点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.
(1)若.
①求抛物线的解析式;
②当线段PD的长度最大时,求点P的坐标;
(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,∠EAD=45°,将△ADC绕点A顺时针旋转90°,得到△AFB,连接EF.
(1)求证:EF=ED;
(2)若AB=2,CD=1,求FE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,海上有A、B、C三座小岛,小岛B在岛A的正北方向,距离为121海里,小岛C分别位于岛B的南偏东53°方向,位于岛A的北偏东27°方向,求小岛B和小岛C之间的距离.(参考数据:sin27°≈,cos27°≈,tan27°≈,sin53°≈,cos53°≈,tan53°≈)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点.
(1)求该抛物线的解析式;
(2)求该抛物线的对称轴以及顶点坐标;
(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛. 赛后组委会整理参赛同学的成绩,并制作了如下不完整的频数分布表和频数分布直方图.
分数段(分数为x分) | 频数 | 百分比 |
60≤x<70 | 8 | 20% |
70≤x<80 | a | 30% |
80≤x<90 | 16 | b% |
90≤x<100 | 4 | 10% |
请根据图表提供的信息,解答下列问题:
(1)表中的a= ,b= ;请补全频数分布直方图;
(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是 ;
(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学. 学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com