精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,ABACDE是斜边BC上的两点,∠EAD45°,将ADC绕点A顺时针旋转90°,得到AFB,连接EF

1)求证:EFED

2)若AB2CD1,求FE的长.

【答案】1)见解析;(2EF.

【解析】

1)由旋转的性质可求∠FAE=∠DAE45°,即可证△AEF≌△AED,可得EFED

2)由旋转的性质可证∠FBE90°,利用勾股定理和方程的思想可求EF的长.

1)∵∠BAC90°,∠EAD45°

∴∠BAE+DAC45°

∵将△ADC绕点A顺时针旋转90°,得到△AFB

∴∠BAF=∠DACAFADCDBF,∠ABF=∠ACD45°

∴∠BAF+BAE45°=∠FAE

∴∠FAE=∠DAEADAFAEAE

∴△AEF≌△AEDSAS),

DEEF

2)∵ABAC2,∠BAC90°

BC4

CD1

BF1BD3,即BE+DE3

∵∠ABF=∠ABC45°

∴∠EBF90°

BF2+BE2EF2

1+3EF2EF2

EF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,过点AAEBC,垂足为E,连接DEF为线段DE上一点,且AFE=B

1)求证:ADF∽△DEC

2)若AB=8AD=6AF=4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,二次函数的图象与x轴的一个交点为A30),另一个交点为B,且与y轴交于点C

1)求m的值;

2)求点B的坐标;

3)该二次函数图像上有一点Dxy)(其中),使,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形ABCD中,AB2AD3O为边AD上一点,以O为圆心,OA为半径r作⊙O,过点B作⊙O的切线BFF为切点.

1)如图1,当⊙O经过点C时,求⊙O截边BC所得弦MC的长度;

2)如图2,切线BF与边AD相交于点E,当FEFO时,求r的值;

3)如图3,当⊙O与边CD相切时,切线BF与边CD相交于点H,设BCH、四边形HFOD、四边形FOAB的面积分别为S1S2S3,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2015德阳)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.

(1)求面料和里料的单价;

(2)该款外套9月份投放市场的批发价为150/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.

①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)

②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形中,边长为10.顺次连结菱形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;按此规律继续下去.则四边形的周长是_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数yax2+bx+ca≠0)的图象与x轴交于AB两点,与y轴交于C点,且对称轴为x1,点B坐标为(﹣10),则下面的四个结论,其中正确的个数为(  )

2a+b04a2b+c0ac0④当y0时,﹣1x4

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2bxc的图象如图,则下列叙述正确的是( )

A. abc0 B. 3ac0

C. b24ac≥0 D. 将该函数图象向左平移2个单位后所得到抛物线的解析式为yax2c

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK=

查看答案和解析>>

同步练习册答案