精英家教网 > 初中数学 > 题目详情

【题目】某县在实施“村村通”工程中,决定在AB两村之间修筑一条公路,甲、乙两个工程队分别从AB两村同时相向开始修筑.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.下图是甲、乙两个工程队所修道路的长度y(米)与修筑时间x(天)之间的函数图像,请根据图像所提供的信息,求该公路的总长度.

【答案】这条公路的总长度为1800米.

【解析】

如图可知乙铺了12天,共铺840米,可求得乙修路函数解析式; 再由两直线的交点(8560),以及点(4360)求出甲的解析式,最后令其中x=16,代入甲的解析式然后再加上乙修的路即可.

解:设y=kx0≤x≤12),
840=12k
k=70
y=70x
x=8时,y=560
y=mx+n4≤x≤16),

解得
y=50x+160
x=16时,y=50×16+160=960
840+960=1800米.
故该公路全长为1800米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图:在六边形ABCDEF中,AFCD,ABDE,BAF=100°,BCD=120°.

求∠ABC和∠D的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】顶点都在格点上的三角形叫做格点三角形,如图,在4×4的方格纸中,ABC是格点三角形.

1)在图1中,以点C为对称中心,作出一个与ABC成中心对称的格点三角形DEC,直接写出ABDE的位置关系;

2)在图2中,以AC所在的直线为对称轴,作出一个与ABC成和对称的格点三角形AFC,直接写出BCF是什么形状的特殊三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】缆车不仅提高了景点接待游客的能力而且解决了登山困难者的难题.如图当缆车经过点A到达点B它走过了700米.由B到达山顶D它又走过了700米.已知线路AB与水平线的夹角16°线路BD与水平线的夹角β20°A的海拔是126米.求山顶D的海拔高度(画出设计图写出解题思路即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知两点,且点B在第一象限,ABx轴,点y轴上。

1)求点P的坐标。

2)试确定的取值范围。

3)当时,求PAB的面积S

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图Rt△ABCACB=90°AD平分∠BACBC于点DOAB边上一点O为圆心作⊙O且经过AD两点AB于点E

1)求证BC是⊙O的切线

2AC=2AB=6BE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某检修小组从地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:

第一次

第二次

第三次

第四次

第五次

第六次

第七次

1)在第__________次记录时距地最远;

2)求收工时距地多远?

3)若每千米耗油升,每升汽油需元,问检修小组工作一天需汽油费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

在数学课上,老师提出利用尺规作图完成下面问题:

已知:OAB.

求作:⊙O,使⊙OOAB的边AB相切.

小明的作法如下:

如图,①取线段OB的中点M;以M为圆心,MO为半径作⊙M,与边AB交于点C

②以O为圆心,OC为半径作⊙O

所以,⊙O就是所求作的圆.

请回答:这样做的依据是__________________________________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题情境)

课外兴趣小组活动时,老师提出了如下问题:

1)如图①,中,,若,点是斜边上一动点,求线段的最小值.

在组内经过合作交流,得到了如下的解决方法:

根据直线外一点和直线上各点连接的所有线段中,垂线段最短,得到:

时,线段取得最小值.请你根据小明的思路求出这个最小值.

(思维运用)

2)如图,在中,为斜边上一动点,过于点,过于点,求线段的最小值.

(问题拓展)

3)如图,线段上的一个动点,分别以为边在的同侧作菱形和菱形,点在一条直线上.分别是对角线的中点,当点在线段上移动时,点之间的距离的最小值为_____.(直接写出结果,不需要写过程)

查看答案和解析>>

同步练习册答案