【题目】为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A、B城往C、D两乡运肥料的平均费用如下表. 现C乡需要肥料240吨,D乡需要肥料260吨.
A城(出) | B城(出) | |
C乡(人) | 20元/吨 | 15元/吨 |
D乡(人) | 25元/吨 | 30元/吨 |
(1)A城和B城各多少吨肥料?
(2)设从B城运往D乡肥料x吨,总运费为y元,求y与x之间的函数关系,并写出自变量x的取值范围;
(3)由于更换车型,使B城运往D乡的运费每吨减少a元(a>0),其余路线运费不变,若C、D两乡的总运费最小值不少于10040元,求a的最大整数值.
【答案】(1)A城和B城分别有200吨和300吨肥料;(2)y=10x+9800,60≤x≤260(3)a的最大整数值为6.
【解析】
(1)根据A、B两城共有肥料500吨,其中A城肥料比B城少100吨,列方程或方程组得答案;
(2)设从B城运往D乡肥料x吨,用含x的代数式分别表示出从A运往运往D乡的肥料吨数,从B城运往C乡肥料吨数,及从A城运往C乡肥料吨数,根据:运费=运输吨数×运输费用,得一次函数解析式;
(3)列出当B城运往D乡的运费每吨减少a(a>0)元时的一次函数解析式,利用一次函数的性质讨论,根据总费用不低于10040元,列出不等式求其整数解得结论.
解:(1)设A城有化肥a吨,B城有化肥b吨
根据题意,得
解得
答:A城和B城分别有200吨和300吨肥料;
(2)设从B城运往D乡肥料x吨,则从B城运往C乡(300-x)吨
从A城运往D乡肥料(260-x)吨,则运往C乡(x-60)吨
如总运费为y元,根据题意,
则:y=20(x-60)+25(260-x)+15(300-x)+30x=10x+9800,
由于函数是一次函数,k=10>0,
∴60≤x≤260
故答案为y=10x+9800,60≤x≤260
(3)从B城运往D乡肥料x吨,由于B城运往D乡的运费每吨减少a(a>0)元,
所以y=20(x-60)+25(260-x)+15(300-x)+(30-a)x=(10-a)x+9800,分两种情况:
①当0<a<10时,∵10-a>0
∴y随着x的增大而增大,∵60≤x≤260
∴当x=60时,运费最少;
∵C、D两乡的总运费最小值不少于10040元
∴(10-a)x+9800≥10040
即(10-a)×60+9800≥10040
解得a≤6,故a的最大整数值为6.
②当10<a<30时,∵10-a<0
∴y随着x的增大而减小,∵60≤x≤260
∴当x最大时,运费最少.即当x=260时,运费最少.
∴(10-a)×260+9800≥10040
解得a≤,故a的最大整数值为0
综上,a的最大整数值为6.
故答案为a的最大整数值为6.
科目:初中数学 来源: 题型:
【题目】已知:如图,是由一个等边△ABE和一个矩形BCDE拼成的一个图形,其点B,C,D的坐标分别为(1,2),(1,1),(3,1).
(1)直接写出E点和A点的坐标;
(2)试以点B为位似中心,作出位似图形A1B1C1D1E1,使所作的图形与原图形的位似比为3∶1;
(3)直接写出图形A1B1C1D1E1的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.
(1)求y与x之间的函数关系式;
(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC内接于⊙O,连接CO并延长交AB于点E,交⊙O于点D,满足∠BEC=3∠ACD.
(1)如图1,求证:AB=AC;
(2)如图2,连接BD,点F为弧BD上一点,连接CF,弧CF=弧BD,过点A作AG⊥CD,垂足为点G,求证:CF+DG=CG;
(3)如图3,在(2)的条件下,点H为AC上一点,分别连接DH,OH,OH⊥DH,过点C作CP⊥AC,交⊙O于点P,OH:CP=1: ,CF=12,连接PF,求PF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB,
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,点,分别为,的中点,连接,作与相切于点,在边上取一点,使,连接.
(1)判断直线与的位置关系,并说明理由;
(2)当,时,求的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2-(m+2)x+(2m-1)=0。
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下图为某小区的两幢1O层住宅楼,由地面向上依次为第1层、第2层、…、第10层,每层的高度为3m,两楼间的距离AC=30m.现需了解在某一时段内,甲楼对乙楼的采光的影响情况.假设某一时刻甲楼楼顶B落在乙楼的影子长EC=h,太阳光线与水平线的夹角为α.
(1)用含α的式子表示h;
(2)当α=30°时,甲楼楼顶B的影子落在乙楼的第几层?从此时算起,若α每小时增加10°,几小时后,甲楼的影子刚好不影响乙楼采光.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,点D、E分别是AC、AB的中点,点F在BC的延长线上,且∠CDF=∠A.
(1)求证:四边形DECF是平行四边形;
(2)若∠A=30°,写出图中所有与FD长度相等的线段.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com