精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,是由一个等边ABE和一个矩形BCDE拼成的一个图形,其点BCD的坐标分别为(1,2),(1,1),(3,1).

(1)直接写出E点和A点的坐标;

(2)试以点B为位似中心,作出位似图形A1B1C1D1E1,使所作的图形与原图形的位似比为31;

(3)直接写出图形A1B1C1D1E1的面积.

【答案】(1) E(3,2),A(2,2+);(2)见解析;(3)18+9.

【解析】(1)由平面直角坐标系与网格,得出E的坐标,由等边三角形ABE的边长为2,求出BE边上的高,确定出A的纵坐标,而A的横坐标为2,即可求出A的坐标;
(2)连接BA并延长,使BA1=3BA,连接BE并延长,使BE1=3BE,连接BD并延长,使BD1=3BD,连接BC并延长,使BC1=3BC,连接A1E1,E1D1,D1C1,C1B,五边形A1B1C1D1E1为所求作的图形;
(3)由五边形ABCDE与五边形A1B1C1D1E1相似,且相似比为1:3,得到面积之比为1:9,求出五边形ABCDE的面积,即可得出五边形A1B1C1D1E1的面积.

(1)由图形可得E(3,2),∵△ABE为边长为2的等边三角形,∴BE边长的高为,∴A(2,2+);

(2)如图所示,五边形A1B1C1D1E1为所求的图形;

(3)∵△ABE为边长是2的等边三角形,∴S△ABE×22,又矩形BCDE的面积为1×2=2,∴五边形ABCDE的面积为2+.∵五边形ABCDE与五边形A1B1C1D1E1相似,且相似比为1∶3,则五边形A1B1C1D1E1的面积为9(2+)=18+9.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC分别是线段A1BB1CC1A的中点,若△A1BlC1的面积是14,那么△ABC的面积是(  )

A.2B.C.3D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,直线EF分别与ABCD相交于MN∠AME=60°

1)求∠DNF的度数;

2)若∠P=90°∠2=∠6=60°,求证:MP平分∠BMN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在分别标有号码2,3,4…109个球中,随机取出2个球,记下它们的号码,则较大号能被较小号整除的概率是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB、CD相交于点O,BOC=80°,OE是∠BOC的角平分线,OFOE的反向延长线.

(1)求∠2、3的度数;

(2)说明OF平分∠AOD的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲、乙两动点分别从正方形 ABCD 的顶点 AC 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的 3 倍,则它们第 2018 次相遇在边( )上.

A. CDB. ADC. ABD. BC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC与△DCE有公共顶点CAB=CDBC=CE,∠ABC=DCE=90°.

1)如图1,当点DBC延长线上时.

①求证:△ABC≌△DCE.

②判断ACDE的位置关系,并说明理由.

2)如图2,△CDE从(1)中位置开始绕点C顺时针旋转,当点D落在BC边上时停止.

①若∠A=60°,记旋转的度数为,当为何值时,DE与△ABC一边平行.

②如图3,若AB=c BC=a AC=b a>c,边BCDE交于点F,求整个运动过程中,FBC上的运动路程(用含a b c的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是⊙O的直径,AB为⊙O的弦,OPAD,OPAB的延长线交于点P,过B点的切线交OP于点C.

(1)求证:∠CBP=ADB.

(2)若OA=2,AB=1,求线段BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在ABCD中,DHAB于点H,CD的垂直平分线交CD于点E,交AB于点F,AB=6,DH=4,BF:FA=1:5.

(1)如图2,作FGAD于点G,交DH于点M,将DGM沿DC方向平移,得到CG′M′,连接M′B.

①求四边形BHMM′的面积;

②直线EF上有一动点N,求DNM周长的最小值.

(2)如图3,延长CBEF于点Q,过点QQKAB,过CD边上的动点PPKEF,并与QK交于点K,将PKQ沿直线PQ翻折,使点K的对应点K′恰好落在直线AB上,求线段CP的长.

查看答案和解析>>

同步练习册答案