精英家教网 > 初中数学 > 题目详情

【题目】某校兴趣小组想测量一座大楼AB的高度.如图6,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)

(参考数据:sin37°0.60,cos37°0.80,tan37°0.75,1.73.)

【答案】33.3.

【解析】

试题分析:延长AB交直线DC于点F,过点E作EHAF,垂足为点H,在RtBCF中利用坡度的定义求得CF的长,则DF即可求得,然后在直角AEH中利用三角函数求得AF的长,进而求得AB的长.

试题解析:延长AB交直线DC于点F,过点E作EHAF,垂足为点H.

在RtBCF中, =i=1:设BF=k,则CF=k,BC=2k.

BC=12,k=6,BF=6,CF=DF=DC+CF,DF=40+在RtAEH中,tanAEH=AH=tan37°×(40+37.8(米),BH=BF﹣FH,BH=6﹣1.5=4.5.AB=AH﹣HB,AB=37.8﹣4.5=33.3.

答:大楼AB的高度约为33.3米.

考点:1.解直角三角形的应用-仰角俯角问题;2.解直角三角形的应用-坡度坡角问题.

型】解答
束】
24

【题目】为迎接安顺市文明城市创建工作,某校八年一班开展了“社会主义核心价值观、未成年人基本文明礼仪规范”的知识竞赛活动,成绩分为A、B、C、D四个等级,并将收集的数据绘制了两幅不完整的统计图.请你根据图中所给出的信息,解答下列各题:

(1)求八年一班共有多少人;

(2)补全折线统计图;

(3)在扇形统计图中等极为“D”的部分所占圆心角的度数为________

(4)若等级A为优秀,求该班的优秀率.

【答案】(1)60;(2)补图见解析;(3)108°;(4)5%.

【解析】(1)用B等人数除以其所占的百分比即可得到总人数;

(2)用求得的总人数乘以C等所占的百分比即可得到C等的人数,总人数减去A、C等的人数即可求得D等的人数;

(3)用D等的人数除以总人数乘以360°即可得到答案;

(4)用A等的人数除以总人数乘以100%即可得到答案. 解答:

解:(1)30÷50%=60()

∴八年级一共有60人。

(2)等级为“C”的人数为60×15%=9().

等级为“D”的人数为603309=18().

补全折线统计图如下。

(3)等极为“D”的部分所占圆心角的度数为 ×360°=108°,

故答案为:108°.

(4)该班的优秀率×100%=5%.

∴该班的优秀率为5%.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】江西二套“谁是赢家”二七王比赛中,节目要统计 4 位选手的短信支持率,第一次 公布 4 位选手的短信支持率情况如图 1,一段时间后,第二次公布 4 位选手的短信支持率,情况如图 2,第二次公布短信支持率时,每位选手的短信支持条数均有增加, 且每位选手增加的短信支持条数相同.

(1)比较图1,图2的变化情况,写出2条结论;

(2)写出第一次4位短信支持总条数与第二次4位短信支持总条数的等式关系,并证明这个等式关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.

(1)求证:EO=FO;

(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.

(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为2的正方形ABCD中,AE平分∠DACAECD于点FCEAE,垂足为点EEGCD,垂足为点G,点H在边BC上,BH=DF,连接AHFHFHAC交于点M,以下结论:

FH=2BHACFHSACF=1;CE=AF=FGDG,其中正确结论的个数为(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,过点C作CE⊥DB交DB的延长线于点E,直线AB与CE相交于点F.

(1)求证:CF为⊙O的切线;

(2)填空:当∠CAB的度数为________时,四边形ACFD是菱形.

【答案】30°

【解析】(1)连结OC,如图,由于∠A=OCA,则根据三角形外角性质得∠BOC=2A,而∠ABD=2BAC,所以∠ABD=BOC,根据平行线的判定得到OCBD,再CEBD得到OCCE,然后根据切线的判定定理得CF为⊙O的切线;
(2)根据三角形的内角和得到∠F=30°,根据等腰三角形的性质得到AC=CF,连接AD,根据平行线的性质得到∠DAF=F=30°,根据全等三角形的性质得到AD=AC,由菱形的判定定理即可得到结论.

答:

(1)证明:连结OC,如图,

OA=OC

∴∠A=OCA

∴∠BOC=A+OCA=2A

∵∠ABD=2BAC

∴∠ABD=BOC

OCBD

CEBD

OCCE

CF为⊙O的切线;

(2)当∠CAB的度数为30°时,四边形ACFD是菱形,理由如下

∵∠A=30°,

∴∠COF=60°,

∴∠F=30°,

∴∠A=F

AC=CF

连接AD

AB是⊙O的直径,

ADBD

ADCF

∴∠DAF=F=30°,

ACBADB,

∴△ACB≌△ADB

AD=AC

AD=CF

ADCF

∴四边形ACFD是菱形。

故答案为:30°.

型】解答
束】
22

【题目】经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.

(1)求出y与x的函数关系式

(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?

(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】,则下列不等式中不一定成立的是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a0),点C的坐标为(0b),且ab满足|b6|0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着OCBAO的线路移动.

1a______________b_____________,点B的坐标为_______________

2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;

3)在移动过程中,当点Px轴的距离为5个单位长度时,求点P移动的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC和△DEF是两个边长都为8cm的等边三角形,且 BDCF都在同一条直线上,连接ADCE

1)求证:四边形ADEC是平行四边形

2)若BD=3cm, ABC沿着BF的方向以每秒1cm的速度运动,设△ABC运动时间为t

①当t等于多少秒时,四边形ADEC为菱形;

②点B运动过程中,四边形ADEC有可能是矩形吗?若可能,请画出图形,并求出t的值;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某加工厂为赶制一批零件,通过提高加工费标准的方式调动工人积极性.工人每天加工零件获得的加工费y(元)与加工个数x个)之间的部分函数图象为折线OA-AB-BC,如图所示.

1求工人一天加工零件不超过20个时每个零件的加工费.

2)求40≤≤60yx的函数关系式.

3)小王两天一共加工了60个零件,共得到加工费220.在这两天中,小王第一天加工零件不足20个,求小王第一天加工的零件个数.

查看答案和解析>>

同步练习册答案