精英家教网 > 初中数学 > 题目详情

【题目】某加工厂为赶制一批零件,通过提高加工费标准的方式调动工人积极性.工人每天加工零件获得的加工费y(元)与加工个数x个)之间的部分函数图象为折线OA-AB-BC,如图所示.

1求工人一天加工零件不超过20个时每个零件的加工费.

2)求40≤≤60yx的函数关系式.

3)小王两天一共加工了60个零件,共得到加工费220.在这两天中,小王第一天加工零件不足20个,求小王第一天加工的零件个数.

【答案】(1)3元;(2) .3小王第一天加工10个零件

【解析】解:(1)由图象可知,当0≤x≤20时,每个零件的加工费为60÷20=3元,

即工人一天加工零件不超过20个时,每个零件的加工费为3元。

2)当40≤x≤60时,设yx的函数关系式为y=kx+b

B40140),C60240)代入,得

,解得

∴yx的函数关系式为y=5x60

3)设小王第一天加工零件的个数为a,则第二天加工零件的个数为(60a),

小王第一天加工的零件不足20个,小王两天一共加工了60个零件。

小王第二天加工的零件不足60个,超过40个。

由(2)知,第二天加工零件的加工费为560a)60

∴560a)60=2203a,解得,a =10

小王第一天加工零件10个。

1)当0≤x≤20时,由图象得出每个零件的加工费为60÷20=3元。

2)当40≤x≤60时,设yx的函数关系式为y=kx+b,将(2060),(40140)代入,列方程组求kb的值即可。

3)设小王第一天加工零件的个数为a,则第二天加工零件的个数为(60a),由(2)知,第二天加工零件的加工费为560a)60,因此列方程560a)60=2203a求解。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校兴趣小组想测量一座大楼AB的高度.如图6,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)

(参考数据:sin37°0.60,cos37°0.80,tan37°0.75,1.73.)

【答案】33.3.

【解析】

试题分析:延长AB交直线DC于点F,过点E作EHAF,垂足为点H,在RtBCF中利用坡度的定义求得CF的长,则DF即可求得,然后在直角AEH中利用三角函数求得AF的长,进而求得AB的长.

试题解析:延长AB交直线DC于点F,过点E作EHAF,垂足为点H.

在RtBCF中, =i=1:设BF=k,则CF=k,BC=2k.

BC=12,k=6,BF=6,CF=DF=DC+CF,DF=40+在RtAEH中,tanAEH=AH=tan37°×(40+37.8(米),BH=BF﹣FH,BH=6﹣1.5=4.5.AB=AH﹣HB,AB=37.8﹣4.5=33.3.

答:大楼AB的高度约为33.3米.

考点:1.解直角三角形的应用-仰角俯角问题;2.解直角三角形的应用-坡度坡角问题.

型】解答
束】
24

【题目】为迎接安顺市文明城市创建工作,某校八年一班开展了“社会主义核心价值观、未成年人基本文明礼仪规范”的知识竞赛活动,成绩分为A、B、C、D四个等级,并将收集的数据绘制了两幅不完整的统计图.请你根据图中所给出的信息,解答下列各题:

(1)求八年一班共有多少人;

(2)补全折线统计图;

(3)在扇形统计图中等极为“D”的部分所占圆心角的度数为________

(4)若等级A为优秀,求该班的优秀率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解本校中考体育备考情况,随机抽去九年级部分学生进行了一次测试(满分60分,成绩均记为整数分)并按测试成绩(单位:分)分成四类:A类(54≤a≤60),B类(48≤a≤53),C类(36≤a≤47),D类(a≤35)绘制出如下两幅不完整的统计图,请根据图中信息,解答下列问题:

1)请补全统计图;

2)在扇形统计图汇总,表示成绩类别为“C”的扇形所对应的圆心角是________度;

3)该校准备召开体育考经验交流会,已知A类学生中有4人满分(男生女生各有2人),现计划从这4人中随机选出2名学生进行经验介绍,请用树状图或列表法求所抽到的2,名学生恰好是一男一女的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【发现证明】

如图1,点EF分别在正方形ABCD的边BCCD上,∠EAF=45°,试判断BEEFFD之间的数量关系.

小聪把ABE绕点A逆时针旋转90°ADG,通过证明AEF≌△AGF;从而发现并证明了EF=BE+FD

【类比引申】

1)如图2,点EF分别在正方形ABCD的边CBCD的延长线上,∠EAF=45°,连接EF,请根据小聪的发现给你的启示写出EFBEDF之间的数量关系,并证明;

【联想拓展】

2)如图3,如图,∠BAC=90°AB=AC,点EF在边BC上,且∠EAF=45°,若BE=3EF=5,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了更好改善河流的水质,治污公司决定购买10台污水处理设备现有AB两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2A型设备比购买3B型设备少6万元.

A

B

价格万元

a

b

处理污水量

240

200

ab的值;

治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;

的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.

(1)用列表法表示出(x,y)的所有可能出现的结果;

(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的概率;

(3)求小明、小华各取一次小球所确定的数x,y满足y的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为O的直径,点C为O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.

(1)试判断CD与O的位置关系,并说明理由;

(2)若直线l与AB的延长线相交于点E,O的半径为3,并且CAB=30°,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点EF分别在边BCCD上,如果AE=4EF=3AF=5,那么正方形ABCD的面积等于_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某教研机构为了了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成不完整的统计表,请根据图表中的信息解答下列问题.

1)样本容量为 ,表格中c的值为 ,并补全统计图;

2)若该校共有初中生2300名,请估计该校不重视阅读数学教科书的初中人数为

3)根据上面的数据统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?

查看答案和解析>>

同步练习册答案