【题目】如图,在平面直角坐标系中,抛物线与轴交于两点,与轴交于点C,点D时抛物线的顶点
(1)求抛物线的解析式和直线的解析式;
(2)试探究:在抛物线上是否存在点P,使得以点为顶点,为直角边的三角形是直角三角形,若存在,请求出,请求出符合条件的点P的坐标;若不存在,请说明理由.
【答案】(1);直线AC的方程为;(2)存在,点P的坐标为或.
【解析】
(1)根据抛物线与的交点坐标,设抛物线的解析式为,化简得,与原题的解析式对比,易得,解出a的值,代入所设解析式即可得抛物线解析式;
根据抛物线与轴交于点C,可求得,设直线AC的解析式为,把A、C的坐标代入可求出,从而即可求得直线AC的解析式;
(2)分两种情况求解:①过点C作AC的垂线交抛物线于另一点P,则直线PC的解析式为,再联立,可求得交点P的坐标为;
②过点A作AC的垂线交抛物线于点P,则可得所以直线PC的解析式为,联立,可求得点P的坐标为.
解:(1)设抛物线的解析式为,
,
∵,
,
∴,
所以抛物线的解析式为;
当时, ,
∴;
设直线AC的解析式为,
把代入, ,
所以,
所以直线AC的方程为;
(2)存在;理由如下:
①过点C作AC的垂线交抛物线于另一点P,
∵直线AC的方程为,
∴直线PC的解析式为,
解方程组:,
解得:或,
此时点P的坐标为;
②过点A作AC的垂线交抛物线于点P,
直线PC的解析式为,
把代入得,
所以直线PC的解析式为,
解方程组:,
解得:或,
所以点P的坐标为.
综上所述,符合条件的点P的坐标为或.
科目:初中数学 来源: 题型:
【题目】如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,其中∠ABC=∠AED=90°,CD与BE、AE分别交于点P、M.对于下列结论:①△CAM∽△DEM;②CD=2BE;③MPMD=MAME;④2CB2=CPCM.其中正确的是( )
A. ①②B. ①②③C. ①②③④D. ①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线a∥b,∠1=40°,∠2=80°,则∠3的度数为( )
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/15/2485292109684736/2491850430775296/STEM/0502255e02c3498e9234cb6eaef26eb9.png]
A.120°B.130°C.140°D.110°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为6的菱形ABCD中,对角线AC,BD交点与点O,点P是△ADO的重心.
(1)当菱形ABCD是正方形时,则PA=________,PD=__________,PO=_________.
(2)线段PA,PD,PO中是否存在长度保持不变的线段,若存在,请求出该线段的长度,若不存在,请说明理由.
(3)求线段PD,DO满足的等量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是等腰直角三角形,,.折叠该纸片,使点落在线段上,折痕与边交于点,与边交于点.
(1)若折叠后使点与点重合,此时__________;
(2)若折叠后使点与边的中点重合,求的长度;
(3)若折叠后点落在边上的点为,且使,求此时的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)
根据所给信息,解答以下问题:
(1)在扇形统计图中,C对应的扇形的圆心角是 度;
(2)补全条形统计图;
(3)所抽取学生的足球运球测试成绩的中位数会落在 等级;
(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公共汽车线路每天运营毛利润(万元)与乘客量(万人)成一次函数关系,其图象如图所示.目前通过监测发现每天平均乘客量为0.6万人次,由于运营成本较高,这条线路处于亏损状态.(毛利润=票价总收入一运营成本)
(1)求该线路公共汽车的单程票价和每天运营成本分别为多少元.
(2)公交公司为了扭亏,若要使每天运营毛利润在0.2~0.4万元之间(包括0.2和0.4),求平均每天的乘客量的范围.
(3)据实际情况,发现该线路乘客量稳定,公交公司决定适当提高票价,当单程票价每提高1元时,每天平均乘客量相应减少0.05万人次,设这条线路的单程票价提高元().当为何值时,该线路每天运营总利润最大,并求出最大的总利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2,∠BCD=120°,A为的中点,延长BA到点P,使BA=AP,连接PE.
(1)求线段BD的长;
(2)求证:直线PE是⊙O的切线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com