精英家教网 > 初中数学 > 题目详情

【题目】如图1,在正方形ABCD中,P为对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F,连接CE.

(1)求证:△PCE是等腰直角三角形;
(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,判断△PCE的形状,并说明理由.

【答案】
(1)

证明:如图1中,

∵四边形ABCD是正方形,

∴AD=DC,∠ADB=∠CDB=45°,∠ADC=90°,

在△PDA和△PDC中,

∴△PDA≌△PDC,

∴PA=PC,∠3=∠1,

∵PA=PE,

∴∠2=∠3,

∴∠1=∠2,

∵∠EDF=90°,∠DFE=∠PFC,

∴∠FPC=EDF=90°,

∴△PEC是等腰直角三角形


(2)

解:如图2中,结论:△PCE是等边三角形.

理由:∵四边形ABCD是菱形,

∴AD=DC,∠ADB=∠CDB,∠ADC=∠ABC=120°,

在△PDA和△PDC中,

∴△PDA≌△PDC,

∴PA=PC,∠3=∠1,

∵PA=PE,

∴∠2=∠3,PA═PE=PC,

∴∠1=∠2,

∵∠DFE=∠PFC,

∴∠EPC=∠EDC,

∵∠ADC=120°,

∴∠EDC=60°,

∴∠EPC=60°,∵PE=PC,

∴△PEC是等边三角形


【解析】(1)由△PDA≌△PDC,推出PA=PC,∠3=∠1,由PA=PE,推出∠2=∠3,推出∠1=∠2,由∠EDF=90°,∠DFE=∠PFC,推出∠FPC=EDF=90°,推出△PEC是等腰直角三角形;(2)由△PDA≌△PDC,推出PA=PC,∠3=∠1,由PA=PE,推出∠2=∠3,PA═PE=PC,推出∠1=∠2,由∠DFE=∠PFC,推出∠EPC=∠EDC,由∠ADC=120°,推出∠EDC=60°,推出∠EPC=60°,由PE=PC,即可证明△PEC是等边三角形;
【考点精析】掌握等腰三角形的性质是解答本题的根本,需要知道等腰三角形的两个底角相等(简称:等边对等角).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】等腰三角形的两边长是37,则这个三角形的周长等于_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】x=﹣3y1,则2xy+1的值为(  )

A.6B.4C.3D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一元二次方程x2+6x+c0有一个根为﹣2,则另一个根为(  )

A.2B.3C.4D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,O是矩形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE、CE相交于点E.求证:

(1)四边形OCED是菱形.
(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,AB=25,顶点C在y轴的负半轴上,AO:OC=3:4,点P在线段OC上,且PO、PC的长(PO<PC)是关于x的方程x2-12x+32=O的两根.

(1) 求P点坐标求

(2) 求AC、BC的长;

(3)在x轴上是否存在点Q,使以点A、C、P、Q为顶点的四边形是梯形?若存在,请直接写出直线PQ的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了了解九年级学生体育测试成绩情况,以九年级(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成下两幅统计图(如图),请你结合图中所给信息解答下列问题:(说明:A级:90分—100分;B级:75分—89分;C级:60分—74分;D级:60分以下)

(1)D级学生的人数占全班人数的百分比为

(2)扇形统计图中C级所在扇形圆心角度数为

(3)该班学生体育测试成绩的中位数落在等级 内;

(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,|a|=5,|b|=3,且a<b<0,则a+b=

查看答案和解析>>

同步练习册答案