精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,EAD的中点,BEAC于点F,若△AEF的面积为3,则四边形EFCD的面积是_________

【答案】15

【解析】

由四边形ABCD是平行四边形,可证得△AEF∽△CBF,又由点EAD中点,△AEF的面积为3,即可求得△EFC,△EDC的面积,即可求得答案.

解:连接EC

EAD的中点,
AE=ED=AD
∵四边形ABCD是平行四边形,
AD=BCADBC
∴△AEF∽△CBF


∵△AEF的面积为3
SEFC=2SAEF=6
SAEC=9
AE=ED
SAEC=SEDC=9
∴四边形EFCD的面积=SACD-SAEF=18-3=15.
故答案为:15

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:

(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;

(2)将△A1B1C1绕原点O逆时针旋转90°得到△A2B2C2,请画出旋转后的△A2B2C2,并写出点C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】由我国完全自主设计、自主建造的首艘国产航母于20185月成功完成第一次海上试验任务.如图,航母由西向东航行,到达处时,测得小岛位于它的北偏东方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛位于它的北偏东方向.如果航母继续航行至小岛的正南方向的处,求还需航行的距离的长.

(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠BAD120°,CEAD,且CEBC,连接BE交对角线AC于点F,则∠EFC_____°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲和乙两位同学想测量一下广场中央的照明灯P的高度,如图,当甲站在A处时,乙测得甲的影子长AD正好与他的身高AM相等,接着甲沿AC方向继续向前走,走到点B处时,甲的影子刚好是线段AB,此时测得AB的长为1.2m.已知甲直立时的身高为1.8m,求照明灯的高CP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线y=kx与反比例函数y=x0)的图象相交点D(m),将直线y=kx向上平移b个单位长度与反比例函数的图象交于点A,与y轴交于点B,与x轴交于点C,且,求平移后的直线的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BCABAC.甲、乙两人想在BC上取一点P,使得∠APC2ABC,其作法如下:

(甲)作AB的中垂线,交BCP点,则P即为所求;

(乙)以B为圆心,AB长为半径画弧,交BCP点,则P即为所求.

对于两人的作法,下列判断何者正确?(  )

A. 两人皆正确B. 两人皆错误C. 甲正确,乙错误D. 甲错误,乙正确

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D为O上一点,点C在直线BA的延长线上,且CDA=CBD.

1求证:CD是O的切线;

2若BC=8cm,tanCDA=,求O的半径;

32条件下,过点B作O的切线交CD的延长线于点E,连接OE,求四边形OEDA的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图1,在平面直角坐标系中,点是二次函数图象上一点,过点轴,如果二次函数的图象与关于成轴对称,则称关于点的伴随函数.如图2,在平面直角坐标系中,二次函数的函数表达式是,点是二次函数图象上一点,且点的横坐标为,二次函数关于点的伴随函数.

1)若,求的函数表达式.

2)过点轴,如果,线段的图象交于点,且,求的值.

3)如图3,二次函数的图象在上方的部分记为,剩余的部分沿翻折得到,由所组成的图象记为.以为顶点在轴上方作正方形.直接写出正方形有三个公共点时的取值范围.

查看答案和解析>>

同步练习册答案