精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD的对角线ACBD相交于点O,且DEACCEBD

1)求证:四边形OCED是菱形;

2)若AB=3AD=4,求四边形OCED的周长和面积.

【答案】1)证明见解析;(2)菱形OCED的周长为,菱形OCED的面积为6

【解析】

1)首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形判定出结论;

2)先求证四边形AOED是平行四边形,从而得到OE=AD=4,然后利用菱形面积公式求其面积,利用勾股定理和矩形性质求得OD的长,从而得出该菱形的边长,则菱形周长可求.

1∵DE∥ACCE∥BD

四边形OCED是平行四边形

∴OC=DEOD=CE

矩形ABCD的对角线ACBD相交于点O

∴OC=OD

平行四边形OCED是菱形

2)如图,连接OE,交CD于点F

由(1)知,四边形OCED是菱形

∴OE⊥CD

又∵矩形ABCD中,ADCDCD=AB=3

ADOE

又∵DE∥AC

∴四边形AOED是平行四边形

OE=AD=4

菱形OCED的面积:

Rt△ABD中,AB=3AD=4

∴BD=5

菱形OCED的周长为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+2k+3x+k20有两个不相等的实数根x1x2.若=﹣1,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某文教店老板到批发市场选购A,B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.

(1)求A,B两种品牌套装每套进价分别为多少元?

(2)若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?

【答案】(1)A种品牌套装每套进价为10元,B种品牌套装每套进价为7.5元;(2)最少购进A品牌工具套装17套.

【解析】试题分析:(1)利用两种套装的套数作为等量关系列方程求解.(2)利用总获利大于等于120,解不等式.

试题解析:

1)解:设B种品牌套装每套进价为x元,则A种品牌套装每套进价为(x+2.5)元.

根据题意得: =2×

解得:x=7.5

经检验,x=7.5为分式方程的解,

x+2.5=10

答:A种品牌套装每套进价为10元,B种品牌套装每套进价为7.5元.

2)解:设购进A品牌工具套装a套,则购进B品牌工具套装(2a+4)套,

根据题意得:(13﹣10a+9.5﹣7.5)(2a+4)>120

解得:a16

a为正整数,

a取最小值17

答:最少购进A品牌工具套装17套.

点睛:分式方程应用题一设,一般题里有两个有关联的未知量,先设出一个未知量并找出两个未知量的联系;二列,找等量关系,列方程,这个时候应该注意的是和差分倍关系:三解,正确解分式方程;四验,应用题要双检验五答应用题要写答.

型】解答
束】
26

【题目】四边形ABCD内接于⊙O,点EAD上一点,连接AC,CB,B=AEC.

(1)如图1,求证:CE=CD;

(2)如图2,若∠B+CAE=120°,ACD=2BAC,求∠BAD的度数;

3)如图3,在(2)的条件下,延长CE交⊙O于点G,若tanBAC= EG=2,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图①,ABC是等边三角形,点D是边BC上任意一点(不与BC重合),点E在边AC上,∠ADE=60°,∠BAD与∠CDE有怎样的数量关系,并给予证明.

2)如图②,在ABC中,AB=AC,点D是边BC上一点(不与BC重合), ADE=B,点E在边AC.CE=BD=3BC=8,求AB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形OABC是矩形,点AC在坐标轴上,B点坐标(-2,4)ODEOCB绕点O顺时针旋转90°得到的,点Dx轴上,直线BDy轴于点F,交OE于点H.

(1) 求直线BD的解析式;

(2) BCF的面积;

(3) M在坐标轴上,平面内是否存在点N,使以点DFMN为顶点的四边形是矩形?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形.RtABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).

(1)先将RtABC向右平移5个单位,再向下平移1个单位后得到RtA1B1C1.试在图中画出图形RtA1B1C1,并写出A1的坐标;

(2)将RtA1B1C1绕点A1顺时针旋转90°后得到RtA2B2C2,试在图中画出图形RtA2B2C2.并计算RtA1B1C1在上述旋转过程中C1所经过的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.

(1)若AD=3,BE=4,求EF的长;

(2)求证:CE=EF;

(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D在△ABC的边BC上,DC=2BD,连接AD与△ABC的中线BE交于点F,连接CF,若△ABC的面积为24,则△AEF的面积为( )

A.4B.5C.6D.7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等腰直角三角形,∠ACB=90°,AB=4,点D是AB的中点,动点P、Q同时从点D出发(点P、Q不与点D重合),点P沿D→A以1cm/s的速度向中点A运动.点Q沿D→B→D以2cm/s的速度运动.回到点D停止.以PQ为边在AB上方作正方形PQMN,设正方形PQMN与△ABC重叠部分的面积为S(cm2),点P运动的时间为t(s).

(1)当点N在边AC上时,求t的值.

(2)用含t的代数式表示PQ的长.

(3)当点Q沿D→B运动,正方形PQMN与△ABC重叠部分图形是五边形时,求S与t之间的函数关系式.

(4)直接写出正方形PQMN与△ABC重叠部分图形是轴对称图形时t的取值范围.

查看答案和解析>>

同步练习册答案