【题目】数学课上林老师出示了问题:如图,AD∥BC,∠AEF=90°,AD=AB=BC=DC,∠B=90°,点E是边BC的中点,且EF交∠DCG的平分线CF于点F,求证:AE=EF.
同学们作了一步又一步的研究:
(1)经过思考,小明展示了一种解题思路:如图1,取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF,小明的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小颖提出一个新的想法:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(3)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
【答案】见解析
【解析】解:(1)正确.理由如下:
取AB的中点M,连接ME,
则AM=BM=AB,
∵AD=AB=BC=DC,
∴四边形ABCD是菱形,
∵∠B=90°,
∴四边形ABCD是正方形,
∴∠BCD=90°,
∴∠DCG=90°,
∵CF平分∠DCG,
∴∠DCF=45°,
∴∠ECF=90°+45°=135°,
∵∠AEF=90°,
∴∠AEB+∠FEC=90°,
∵∠BAE+∠AEB=90°,
∴∠BAE=∠FEC,
∵点E是边BC的中点,
∴BE=EC=BC,
∴AM=EC=BM=BE,
∴△BME是等腰直角三角形,
∴∠BME=45°,
∴∠AME=135°=∠ECF,
在△AME和△ECF中,,
∴△AME≌△ECF(ASA),
∴AE=EF
(2)正确.理由如下:在AB上取一点M,使AM=EC,连接ME.
∵AB=BC,AM=EC,
∴BM=BE.
∴∠BME=45°.
∴∠AME=135°.
∵CF是外角平分线,
∴∠DCF=45°,
∴∠ECF=135°.
∴∠AME=∠ECF.
∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,
∴∠BAE=∠CEF.
在△AME和△ECF中,,
∴△AME≌△BCF.
∴AE=EF.
(3)正确.理由如下:在BA的延长线上取一点N,使AN=CE,连接NE.
∵AB=BC,AN=CE,
∴BN=BE.
∴∠N=∠FCE=45°..
∵四边形ABCD是正方形,
∴AD∥BE.
∴∠DAE=∠BEA.
∴∠NAE=∠CEF.
在△ANE和△ECF中,,
∴△ANE≌△ECF(ASA).
∴AE=EF.
科目:初中数学 来源: 题型:
【题目】在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置。如图所示,
现将△ABC平移后得△EDF,使点B的对应点为点D,点A对应点为点E.
(1)画出△EDF;
(2)线段BD与AE有何关系? ____________;
(3)连接CD、BD,则四边形ABDC的面积为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某市九年级学生学业考试体育成绩,现随机抽取部分学生的体育(A:50分;B:49﹣45分;C:44﹣40分;D:39﹣30分;E:29﹣0分)成绩进行分段统计如下:
根据上面提供的信息,回答下列问题:
(1)在统计表中,a的值为 ,b的值为 ;
(2)将统计图补充完整;
(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10560名九年级学生中体育成绩为优秀的学生人数约有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(4分)有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( )
A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 (2016黑龙江大庆第10题)若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为( )
A.M>N B.M=N C.M<N D.不确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线y1=x+m与双曲线y2=交于点A、B,已知点A、B的横坐标为2和﹣1.
(1)求k的值及直线与x轴的交点坐标;
(2)直线y=2x交双曲线y=于点C、D(点C在第一象限)求点C、D的坐标;
(3)设直线y=ax+b与双曲线y=(ak≠0)的两个交点的横坐标为x1、x2,直线与 x轴交点的横坐标为x0,结合(1)、(2)中的结果,猜想x1、x2、x0之间的等量关系并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线y=﹣x+2分别交x、y轴于点A、B,点C为线段OA的中点,动点P从坐标原点出发,以2个单位长度/秒的速度向终点A运动,动点Q从点C出发,以个单位长度/秒的速度向终点B运动.过点Q作QM∥AB交x轴于点M,动点P、Q同时出发,其中一个点到达终点,另一个点也停止运动,设点P运动的时间为t秒,PM的长为y个单位长度.
(1)∠BCO= °;
(2)求y关于t的函数关系式及自变量t的取值范围;
(3)是否存在时间t,使得以PC为直径的⊙D与直线QM相切?若存在,求t的值;不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com