精英家教网 > 初中数学 > 题目详情
2.解方程:x=(x2+3x-2)2+3(x2+3x-2)-2.

分析 首先判断原方程有因式x2+2x-2,再利用因式分解法解方程即可.

解答 解:设f(x)=x2+3x-2,
由题意x=f(f(x)),所以f(x)=x的根都是原方程的根,即原方程有因式x2+2x-2,
∴x=(x2+2x-2+x)2+3(x2+2x-2+x)-2,
∴x=(x2+2x-2)2-2x(x2+2x-2)+x2+3(x2+2x-2)+3x-2,
∴(x2+2x-2)(x2+4x+2)=0,
∴x2+2x-2=0,或x2+4x+2=0,
∴x=-1+$\sqrt{3}$或-1-$\sqrt{3}$或-2+$\sqrt{2}$或-2-$\sqrt{2}$.

点评 本题考查高次方程,解题的关键是学会因式分解法解方程,题目比较难,解题的突破点是发现方程有因式x2+2x-2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,△ABC内接于⊙O,弦AD⊥BC于E,CF⊥AB于F,交AD于G,BE=3,CE=2,且∠OBC=45°,求四边形ABDC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,△ADB和△ACE都是等边三角形,连结BE与CD,求证:△ADC≌△ABE,思考:当△ADB和△ACE有怎样的位置关系时,图中不存在全等三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.若当1<x<2时,不等式$\frac{1}{x}$>m有解,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.数学问题:计算$\frac{1}{m}$+$\frac{1}{{m}^{2}}$+$\frac{1}{{m}^{3}}$+…+$\frac{1}{{m}^{n}}$(其中m,n都是正整数,且m≥2,n≥1)
探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究. 
探究一:计算探究一:计算$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$.
第1次分割,把正方形的面积二等分,其中阴影部分的面积为$\frac{1}{2}$ 
第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为 $\frac{1}{2}$+$\frac{1}{{2}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续二等分,…; 

第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$最后空白部分的面积是 $\frac{1}{{2}^{n}}$.
探究二:计算$\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$.
第1次分割,把正方形的面积三等分,其中阴影部分的面积为$\frac{2}{3}$;
第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为$\frac{2}{3}$+$\frac{2}{{3}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续三等分,…;

第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为$\frac{2}{3}$+$\frac{2}{{3}^{2}}$+$\frac{2}{{3}^{3}}$+…+$\frac{2}{{3}^{n}}$,最后空白部分的面积是$\frac{1}{{3}^{n}}$.
根据第n次分割图可得等式:$\frac{2}{3}$+$\frac{2}{{3}^{2}}$+$\frac{2}{{3}^{3}}$+…+$\frac{2}{{3}^{n}}$=1-$\frac{1}{{3}^{n}}$,
两边同除以2,得$\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$=$\frac{1}{2}$-$\frac{1}{2×{3}^{n}}$.

探究三:计算$\frac{1}{4}$+$\frac{1}{{4}^{2}}$+$\frac{1}{{4}^{3}}$+…+$\frac{1}{{4}^{n}}$.
第1次分割,把正方形的面积四等分,其中阴影部分的面积为$\frac{3}{4}$;
第2次分割,把上次分割图中空白部分的面积继续四等分,阴影部分的面积之和为$\frac{3}{4}$+$\frac{3}{{4}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续四等分,…;

第n次分割,把上次分割图中空白部分的面积最后四等分,所有阴影部分的面积之和为$\frac{3}{4}$+$\frac{3}{{4}^{2}}$+$\frac{3}{{4}^{3}}$+…+$\frac{3}{{4}^{n}}$,最后空白部分的面积是$\frac{1}{{4}^{n}}$
根据第n次分割图可得等式:$\frac{3}{4}$+$\frac{3}{{4}^{2}}$+$\frac{3}{{4}^{3}}$+…+$\frac{3}{{4}^{n}}$=1-$\frac{1}{{4}^{n}}$.
两边同除以3,得$\frac{1}{4}$+$\frac{1}{{4}^{2}}$+$\frac{1}{{4}^{3}}$+…+$\frac{1}{{4}^{n}}$=$\frac{1}{3}$-$\frac{1}{3×{4}^{n}}$

探究四:计算$\frac{1}{5}$+$\frac{1}{{5}^{2}}$+$\frac{1}{{5}^{3}}$+…+$\frac{1}{{5}^{n}}$
(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)

解决问题:计算$\frac{1}{m}$+$\frac{1}{{m}^{2}}$+$\frac{1}{{m}^{3}}$+…+$\frac{1}{{m}^{n}}$.
(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)
根据第n次分割图可得等式:$\frac{m-1}{m}$+$\frac{m-1}{{m}^{2}}$+$\frac{m-1}{{m}^{3}}$+…+$\frac{m-1}{{m}^{n}}$=1-$\frac{1}{{m}^{n}}$,
所以,$\frac{1}{m}$+$\frac{1}{{m}^{2}}$+$\frac{1}{{m}^{3}}$+…+$\frac{1}{{m}^{n}}$=$\frac{1}{m-1}$-$\frac{1}{(m-1){m}^{n}}$.
拓广应用:计算$\frac{6-1}{6}$+$\frac{{6}^{2}-1}{{6}^{2}}$+$\frac{{6}^{3}-1}{{6}^{3}}$+…$\frac{{6}^{n}-1}{{6}^{n}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图所示,⊙O内切于△ABC,DE∥BC交AC,AB于点D,E,若△ABC的周长为12,BC=2,求DE的长.(提示:利用切线长定理)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.若x-y=1,化简:(x+y)(x2+y2)(x4+y4)(x8+y8)(x16+y16

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.张师傅在铺地板时发现,用8块大小一样的小长方形瓷砖恰好可以拼成一个大的长方形,如图1;然后,他用这8块瓷砖又拼出一个正方形,如图2;中间恰好空出一个边长为1cm的小正方形,假设小长方形的长为y,宽为x,且y>x.

(1)写出图1中y与x的函数关系式;
(2)写出图2中y与x的函数关系式;
(3)在图3中作出两个函数的图象,写出交点坐标,并解释交点坐标的实际意义.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.若0<a<1,则$\sqrt{(a+\frac{1}{a})^{2}-4}$-$\sqrt{(a-\frac{1}{a})^{2}+4}$的值等于$\frac{2}{a}$.

查看答案和解析>>

同步练习册答案