精英家教网 > 初中数学 > 题目详情
6.已知,如图,CE⊥AB,BD⊥AC,∠B=∠C,BF=CF.求证:AF为∠BAC的平分线.

分析 由条件可以先证明△CFD≌△BEF,可得DF=FE,再结合AF=AF,可证明Rt△ADF≌Rt△AEF,可得∠DAF=∠EAF,可得结论.

解答 证明:∵CE⊥AB,BD⊥AC,
∴∠CDF=∠BEF,
在△CFD和△BEF中,
$\left\{\begin{array}{l}{∠CDF=∠BEF}\\{∠CFD=∠BFE}\\{BF=CF}\end{array}\right.$,
∴△CFD≌△BEF(AAS),
∴DF=EF,
在Rt△ADF和Rt△AEF中,
$\left\{\begin{array}{l}{DF=EF}\\{AF=AF}\end{array}\right.$,
∴Rt△ADF≌Rt△AEF(HL),
∴∠CAF=∠BAF,
∴AF为∠BAC的平分线.

点评 本题主要考查三角形全等的判定和性质,正确掌握三角形全等的判定方法是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.已知等边三角形的边长为a,则它边上的高、面积分别是(  )
A.$\frac{a}{2}$,$\frac{{a}^{2}}{4}$B.$\frac{\sqrt{3}a}{2}$,$\frac{{a}^{2}}{4}$C.$\frac{\sqrt{3}a}{2}$,$\frac{\sqrt{3}{a}^{2}}{4}$D.$\frac{3a}{4}$,$\frac{\sqrt{3}{a}^{2}}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知n为自然数,代数式xn+1-2y3+1是三次多项式,则n可以取值的个数是3个.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.解方程组:$\left\{\begin{array}{l}{2x-y=4}\\{3x+y=1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的.正常水位时,大孔水面宽度为20m,顶点距水面6m,小孔顶点距水面4.5m.当水位上涨刚好淹没小孔时,大孔的水面宽度为10m.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,抛物线y=x2-mx+n经过点A(-1,0),与x轴的另一个交点是B(B在A的右侧),与y轴交于点C,抛物线的对称轴EF交x轴于点E,点C关于EF的对称点是点D.
(1)n=-m-1(用含m的代数式表示).
(2)当点E是OA中点时,求该抛物线对应的函数关系式.
(3)当以点A,C,D,E为顶点的四边形是平行四边形时,求m的值.
(4)连结AC、CE,当△ACE的面积是$\frac{1}{2}$时,直接写出m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知多项式:A=2a2+ab-2a-1,B=a2+ab-1.
(1)当a=-$\frac{1}{2}$,b=4时,求A-2B的值;
(2)若多项式C满足:C=A-2B-C,试用a、b的代数式表示C.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列计算正确的是(  )
A.2a+3b=5abB.5x2-2x2=3C.4mn-4=mnD.-y2-y2=-2y2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图所示,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.
(1)求线段MN的长.
(2)若C是线段AB上任意一点,其他条件不变,你能猜想出MN的长度吗?并说明理由.
(3)若C在线段AB的延长线上,且满足M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.

查看答案和解析>>

同步练习册答案