【题目】能够铺满地面的正多边形组合是( )
A. 正三角形和正五边形B. 正方形和正六边形
C. 正方形和正五边形D. 正五边形和正十边形
【答案】D
【解析】
正多边形的组合能否铺满地面,关键是要看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.
解:A、正五边形和正三边形内角分别为108°、60°,由于60m+108n=360,得m=6-n,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;
B、正方形、正六边形内角分别为90°、120°,不能构成360°的周角,故不能铺满,故此选项错误;
C、正方形、正五边形内角分别为90°、108°,当90n+108m=360,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;
D、正五边形和正十边形内角分别为108、144,两个正五边形与一个正十边形能铺满地面,故此选项正确.
故选:D.
科目:初中数学 来源: 题型:
【题目】广安某大型蔬菜超市从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:
蔬菜品种 | 西红柿 | 青椒 | 西兰花 | 豆角 |
批发价(元/) | 3.6 | 5.4 | 8 | 4.8 |
零售价(元/) | 5.4 | 8.4 | 14 | 7.6 |
请解答下列问题:
(1)第一天,该蔬菜超市批发青椒和豆角两种蔬菜共,用去了元钱,问该蔬菜超市批发青椒和豆角两种蔬菜各多少千克?
(2)在(1)的条件,这两种蔬菜当天全部售完一共能盈利多少?
(3)第二天,蔬菜超市用元钱批发青椒和西兰花,要想当天全部售完后所盈利不少于元,则该经营户最多能批发青椒多少?(结果取整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线(k≠0)与有交点,则k的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一块木板如图所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,木板的面积为( )
A. 60 B. 30 C. 24 D. 12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在四边形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P从A向点D以1cm/s的速度运动,到点D即停止.点Q从点C向点B以2cm/s的速度运动,到点B即停止.直线PQ将四边形ABCD截得两个四边形,分别为四边形ABQP和四边形PQCD,则当P,Q两点同时出发,几秒后所截得两个四边形中,其中一个四边形为平行四边形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.
(1)求证:四边形BDFC是平行四边形;
(2)若△BCD是等腰三角形,求四边形BDFC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图小方格的边长为1个单位。
(1)画出坐标系,使A、B的坐标分别为(1,1)、(-2,0),并写出点C的坐标;
(2)若将△ABC向右平移4个单位,再向上平移3个单位,得到,在图中画出;
(3)写出△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com