【题目】如图,ΔABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是( )
A.75°B.70°C.65°D.60°
科目:初中数学 来源: 题型:
【题目】如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有__________个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有( )
A. 3个 B. 4个 C. 5个 D. 6个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于一元二次方程,有下列说法:
①若,则方程必有一个根为1;
②若方程有两个不相等的实根,则方程必有两个不相等的实根;
③若是方程的一个根,则一定有成立;
④若是一元二次方程的根,则.
其中正确的有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】每年九月是开学季,大多数学生会购买若干笔记本满足日常学习需要,校外某文具店老板开学前某日去批发市场进货,购进甲乙丙三种不同款式的笔记本,已知甲款笔记本的进价为2元/本,乙款笔记本的进价为4元/本,丙款笔记本的进价为6元/本,经过调研发现,甲款笔记本、乙款笔记本和丙款笔记本的零售价分别定为4元/本、6元/本和10元/本时,每天可分别售出甲款笔记本30本、乙款笔记本50本和丙款笔记本20本,如果将乙款笔记本的零售价提高元(),甲款笔记本和丙款笔记本的零售价均保持不变,那么乙款笔记本每天的销售量将下降,丙款笔记本每天的销售量将上升,甲款笔记本每天的销量仍保持不变.
(1)若,调价后每天销售三款笔记本共可获利多少元?
(2)若调价后每天销售三款笔记本共可获利260元,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线与⊙O相离,OA⊥于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长,交直线于点C,使得AB=AC.
(1)求证:AB是⊙O的切线;
(2)若PC=2,OA=4,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.
(1)该商店第一次购进水果多少千克;
(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?
注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】再读教材:宽与长的比是(约为)的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感.世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为的矩形纸片折叠黄金矩形(提示:)
第一步:在矩形纸片一端利用图①的方法折出一个正方形,然后把纸片展平.
第二步:如图②,把这个正方形折成两个相等的矩形,再把纸片展平.
第三步:折出内侧矩形的对角线,并把折到图③中所示的处.
第四步:展平纸片,按照所得的点折出使则图④中就会出现黄金矩形.
问题解决:
(1)图③中_ (保留根号);
(2)如图③,判断四边形的形状,并说明理由;
(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△BDE都是等边三角形,点A,B,D在一条直线上。给出4个结论:①AE=CD;②AB⊥FB;③∠AFC=60°;④△BGH是等边三角形。其中正确的是( )
A.①,②,③B.①,②,④
C.①,③,④D.②,③,④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com