【题目】如图,在中,,,,将绕点顺时针选择,得到,与相交于点,则图中阴影部分的面积为__________.
【答案】
【解析】
先由已知和旋转的性质得到∠C′B′E=30°,∠EAD=45°,AB=AB′=4,BC=B′C′=2,A C′=AC=2,再设DE=x,且x<2,根据直角三角形的性质和勾股定理得到AE=x,B′E=4-x,AD= ,B′D=2x,C′D=2-2x,然后再Rt△AC′D中运用勾股定理求得x,最后利用阴影部分的面积=扇形ABB′的面积-三角形ADB′的面积即可解答.
解:过D作DE⊥A B′,垂足为E,由题意得:∠C′B′E=30°,∠EAD=45°,AB=AB′=4,BC=B′C′=2,A C′=AC=2,
设DE=x,且x<2,则AE=x,B′E=4-x,AD= ,B′D=2x,C′D=2-2x
∵在Rt△AC′D中AC′2+DC′2=AD2
∴22+(2-2x)2=()2
解得x=2-2或x=2+2(舍)
∴阴影部分的面积为= =
故答案为.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线交y轴于点B(0,3),交x轴于A,C两点,C点坐标(4,0),点P是BC上方抛物线上一动点(P不与B,C重合).
(1)求抛物线的解析式;
(2)若点P到直线BC距离是,求点P的坐标;
(3)连接AP交线段BC于点H,点M是y轴负半轴上一点,且CH=BM,当AH+CM的值最小时,请直接写出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张老师把微信运动里“好友计步榜”排名前20的好友一天行走的步数做了整理,绘制了如下不完整的统计图表:
组别 | 步数分组 | 频率 |
A | x<6000 | 0.1 |
B | 6000≤x<7000 | 0.5 |
C | 7000≤x<8000 | m |
D | x≥8000 | n |
合计 | 1 |
根据信息解答下列问题:
(1)填空:m= ,n= ;并补全条形统计图;
(2)这20名朋友一天行走步数的中位数落在 组;(填组别)
(3)张老师准备随机给排名前4名的甲、乙、丙、丁中的两位点赞,请求出甲、乙被同时点赞的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(,),AB=1,AD=2.
(1)直接写出B、C、D三点的坐标;
(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数()的图象上,得矩形A′B′C′D′.求矩形ABCD的平移距离m和反比例函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC内接于⊙O,AB是直径,OD⊥BC于点D,延长DO交⊙O于F,连接OC,AF.
(1)求证:△COD≌△BOD;
(2)填空:①当∠1= 时,四边形OCAF是菱形;
②当∠1= 时,AB=2OD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(4,0),C(0,2)三点.
(1)求这条抛物线的解析式;
(2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;
(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AC=6 ,点D为直线AB上一点,且AB=3BD,直线CD与直线BC所夹锐角的正切值为 ,并且CD⊥AC,则BC的长为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com