精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,,现将直角边沿直线折叠,使它落在斜边上,且与重合,求的长.

【答案】CD=6.

【解析】

利用勾股定理先求得AB的长设CD=x,表示BD,再根据翻折变换的性质可得DE=CD,AE=AC,然后求出BE,在Rt△BDE中,利用勾股定理列出方程求解即可.

∵Rt△ABC中,AC=12,BC=16,

由勾股定理得,AB2=AC2+BC2=122+162=400,

∴AB=20,

CD=x,则BD=BC﹣CD=16﹣x,

直角边AC沿直线AD折叠落在斜边AB上,且与AE重合

∴DE=CD=x,AE=AC=12,

∴BE=AB﹣AE=20﹣12=8,

Rt△BDE中,由勾股定理得,BE2+DE2=BD282+x2=(16﹣x)2

解得x=6,

CD=6.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=3x﹣3分别交x轴、y轴于A,B两点,抛物线y=x2+bx+c经过A,B两点,点C是抛物线与x轴的另一个交点(与A点不重合).

(1)求抛物线的解析式;
(2)求△ABC的面积;
(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为 ,则AK=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程
(1)x(x﹣3)+x﹣3=0
(2)4x2+12x+9=81.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=BC.延长DA与⊙O的另一个交点为E,连接AC,CE.

(1)求证:∠B=∠D;
(2)若AB=13,BC﹣AC=7,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点出发以每秒个单位的速度在线段上从点向点运动,点同时从出发以每秒个单位的速度在线段上向点运动,连接,设两点运动时间为.

(1)运动   秒时,

(2)运动多少秒时,能成立;

(3),求的大小.(用含的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(9)如图在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).

(1)△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,A的对应点A2的坐标为(0,4),画出平移后对应的△A2B2C2

(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2请直接写出旋转中心的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,水库大坝的横截面是梯形,坝顶AD宽5米,坝高10米,斜坡CD的坡角为45°,斜坡AB的坡度i=1:1.5,那么坝底BC的长度为米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)请选择一个k的负整数值,并求出方程的根.

查看答案和解析>>

同步练习册答案