精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.

(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求DE的长.

【答案】
(1)

证明:∵AE=AB,

∴△ABE是等腰三角形,

∴∠ABE= (180°﹣∠BAC=)=90°﹣ ∠BAC,

∵∠BAC=2∠CBE,

∴∠CBE= ∠BAC,

∴∠ABC=∠ABE+∠CBE=(90°﹣ ∠BAC)+ ∠BAC=90°,

即AB⊥BC,

∴BC是⊙O的切线


(2)

解: 连接BD,

∵AB是⊙O的直径,

∴∠ADB=90°,

∵∠ABC=90°,

∴∠ADB=∠ABC,

∵∠A=∠A,

∴△ABD∽△ACB,

∵在Rt△ABC中,AB=8,BC=6,

∴AC= =10,

解得:AD=6.4,

∵AE=AB=8,

∴DE=AE﹣AD=8﹣6.4=1.6


【解析】(1)由AE=AB,可得∠ABE=90°﹣ ∠BAC,又由∠BAC=2∠CBE,可求得∠ABC=∠ABE+∠CBE=90°,继而证得结论;(2)首先连接BD,易证得△ABD∽△ACB,然后由相似三角形的对应边成比例,求得答案.此题考查了切线的判定与性质、相似三角形的判定与性质、等腰三角形的性质以及勾股定理.注意准确作出辅助线,证得△ABD∽△ACB是解此题的关键.
【考点精析】认真审题,首先需要了解等腰三角形的性质(等腰三角形的两个底角相等(简称:等边对等角)),还要掌握勾股定理的概念(直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:

5640

6430

6520

6798

7325

8430

8215

7453

7446

6754

7638

6834

7326

6830

8648

8753

9450

9865

7290

7850

对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表

组别

步数分组

频数

A

5500≤x<6500

2

B

6500≤x<7500

10

C

7500≤x<8500

m

D

8500≤x<9500

3

E

9500≤x<10500

n

请根据以上信息解答下列问题:

(1)填空:m= , n=
(2)补全频数发布直方图;
(3)这20名“健步走运动”团队成员一天行走步数的中位数落在组;
(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:|﹣2|+4cos30°﹣( 3+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据: =1.414, =1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上,张老师举了下面的例题:

1 等腰三角形中,,求的度数.(答案:

2 等腰三角形中,,求的度数.(答案:

张老师启发同学们进行变式,小敏编了如下一题:

变式 等腰三角形中,,求的度数.

(1)请你解答以上的变式题.

(2)解(1)后,小敏发现,的度数不同,得到的度数的个数也可能不同.如果在等腰三角形中,设,当有三个不同的度数时,请你探索的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,DEBC,垂足为点E,连接ACDE于点F,点GAF的中点,∠ACD=2ACB.若AF=50,EC=7,则DE的长为(

A. 14 B. 21 C. 24 D. 25

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M。

(1)若∠ACD=114°,求∠MAB的度数;

(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,AB⊥AC,AB=1,BC= .对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.

(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;
(2)试说明在旋转过程中,线段AF与EC总保持相等;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.

查看答案和解析>>

同步练习册答案