精英家教网 > 初中数学 > 题目详情

【题目】如图,平行四边形ABCD中,AB⊥AC,AB=1,BC= .对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.

(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;
(2)试说明在旋转过程中,线段AF与EC总保持相等;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.

【答案】
(1)证明:当∠AOF=90°时,

∵∠BAO=∠AOF=90°,

∴AB∥EF,

又∵AF∥BE,

∴四边形ABEF为平行四边形


(2)证明:∵四边形ABCD为平行四边形,

在△AOF和△COE中

∴△AOF≌△COE(ASA).

∴AF=EC


(3)解:四边形BEDF可以是菱形.

理由:如图,连接BF,DE

由(2)知△AOF≌△COE,得OE=OF,

∴EF与BD互相平分.

∴当EF⊥BD时,四边形BEDF为菱形.

在Rt△ABC中,AC= = =2,

∴OA=1=AB,

又∵AB⊥AC,

∴∠AOB=45°,

∴∠AOF=45°,

∴AC绕点O顺时针旋转45°时,四边形BEDF为菱形.


【解析】(1)当旋转角为90°时,∠AOF=90°,由AB⊥AC,可得AB∥EF,即可证明四边形ABEF为平行四边形;(2)证明△AOF≌△COE即可;(3)EF⊥BD时,四边形BEDF为菱形,可根据勾股定理求得AC=2,∴OA=1=AB,又AB⊥AC,∴∠AOB=45°.
【考点精析】根据题目的已知条件,利用平行四边形的判定与性质和菱形的判定方法的相关知识可以得到问题的答案,需要掌握若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积;任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.

(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点D是△ABC所在平面内一点,连接ADCD

(1)如图1,若∠A=28°,∠B=72°,∠C=11°,求∠ADC

(2)如图2,若存在一点P,使得PB平分∠ABC,同时PD平分∠ADC,探究∠A,∠P,∠C的关系并证明;

(3)如图3,在 (2)的条件下,将点D移至∠ABC的外部,其它条件不变,探究∠A,∠P,∠C的关系并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,联结AD,以AD为一边且在AD的右侧作正方形ADEF.

(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,将△ABD绕A点逆时针旋转90°,所得到的三角形为 , 线段CF,BD所在直线的位置关系为 , 线段CF,BD的数量关系为

(2)②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;

(3)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C,F不重合),并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,

(1)①画出△ABC关于x轴对称的△A1B1C1
②画出△ABC绕原点O旋转180°后的△A2B2C2 , 并写出A2、B2、C2的坐标
(2)假设每个正方形网格的边长为1,求△A1B1C1的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣ ),( )是抛物线上两点,则y1<y2其中结论正确的是(

A.①②
B.②③
C.②④
D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2+ax+a﹣2=0
(1)若该方程的一个根为1,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠ABC+D=180°AC平分∠BADCEABCFAD.试说明:

1CBE≌△CDF

2AB+DF=AF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BC=4,BD平分∠ABC,过点AAD⊥BD于点D,过点DDE∥CB,分別交AB、AC于点E、F,若EF=2DF,则AB的长为(  )

A. 4 B. 6 C. 8 D. 10

查看答案和解析>>

同步练习册答案