精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,ADBC,DEBC,垂足为点E,连接ACDE于点F,点GAF的中点,∠ACD=2ACB.若AF=50,EC=7,则DE的长为(

A. 14 B. 21 C. 24 D. 25

【答案】C

【解析】

根据直角三角形斜边上的中线的性质可得DG=AF,根据等腰三角形的性质可得∠GAD=∠GDA,根据三角形外角的性质可得∠CGD=2∠GAD,再根据平行线的性质和等量关系可得∠ACD=∠CGD,根据等腰三角形的性质可得CD=DG,再根据勾股定理即可求解.

解:∵AD∥BC,DE⊥BC,
∴DE⊥AD,∠CAD=∠ACB,∠ADE=∠BED=90°,
又∵点GAF的中点,
∴DG=AF=25,
∴∠GAD=∠GDA,
∴∠CGD=2∠CAD,
∵∠ACD=2∠ACB=2∠CAD,
∴∠ACD=∠CGD,
∴CD=DG=25,

RtCED中,DE== =24.

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.

(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:

x

﹣3

﹣2

﹣1

0

1

2

3

y

3

m

﹣1

0

﹣1

0

3

其中,m=
(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)观察函数图象,写出两条函数的性质.
(4)进一步探究函数图象发现:
①函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;
②方程x2﹣2|x|=2有个实数根;
③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是(  )

A.(2,5)
B.(5,2)
C.(2,﹣5)
D.(5,﹣2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.

(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上,老师出示了如下的题目:如图(1),在等边ABC中,点EAB上,点DCB的延长线上,且ED=EC,试判断AEBD的大小关系,并说明理由

小敏与同桌小聪讨论后,进行了如下解答:

(1)特殊情况,探索结论

当点EAB的中点时,如图(2),确定线段AEDB的大小关系,请你直接写出结论:AE DB(填“>”,“<”“=”);

(2)特例启发,解答题目

如图(1),试判断AEBD的大小关系,并说明理由

(3)拓展结论,设计新题

在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC;若ABC的边长为1,AE=2,请画出图形,求CD的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.
(1)求证:△ABF≌△CDE;
(2)如图,若∠1=65°,求∠B的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点BFCE在直线lFC之间不能直接测量,点ADl异侧,测得AB=DEAC=DFBF=EC.

1求证:ABC≌△DEF

2指出图中所有平行的线段,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点D是△ABC所在平面内一点,连接ADCD

(1)如图1,若∠A=28°,∠B=72°,∠C=11°,求∠ADC

(2)如图2,若存在一点P,使得PB平分∠ABC,同时PD平分∠ADC,探究∠A,∠P,∠C的关系并证明;

(3)如图3,在 (2)的条件下,将点D移至∠ABC的外部,其它条件不变,探究∠A,∠P,∠C的关系并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2+ax+a﹣2=0
(1)若该方程的一个根为1,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.

查看答案和解析>>

同步练习册答案