5£®Æ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªA£¨1£¬0£©¡¢B£¨0£¬3£©£®ÒÔABΪб±ß×÷µÈÑüÖ±½ÇÈý½ÇÐÎABC£¬µãCÔÚµÚÒ»ÏóÏÞ£¬MÊÇABµÄÖе㣮P¡¢Q·Ö±ðÊÇÏß¶ÎAC¡¢CBÉϵ͝µã£¬µãP×ÔA³ö·¢£¬ÒÔ$\frac{{\sqrt{5}}}{5}$¸öµ¥Î»/sµÄËÙ¶ÈÏòCÔ˶¯£»µãQ×ÔC³ö·¢£¬ÒÔÏàͬËÙ¶ÈÏòBÔ˶¯£®BC½»xÖáÓÚµãE£®ÉèÔ˶¯Ê±¼äΪt s£®
£¨1£©ÇóÖ¤£ºMP=MQ£®
£¨2£©ÇóµãCµÄ×ø±ê£®
£¨3£©Çó¹ýA¡¢B¡¢CÈýµãµÄÅ×ÎïÏߵĽâÎöʽ£®
£¨4£©ÊÇ·ñ´æÔÚtÖµ£¬Ê¹¡ÏEMP=45¡ã£¿Èô´æÔÚ£¬Çó³ötµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝµÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊ£¬¿ÉµÃCM=AM£¬¡ÏMAC=¡ÏMCQ£¬¸ù¾ÝÈ«µÈÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬¿ÉµÃ´ð°¸£»
£¨2£©¸ù¾ÝÈ«µÈÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬¿ÉµÃCF=CD£¬BF=AD£¬¿ÉµÃ¹ØÓÚxµÄ·½³Ì£»
£¨3£©¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃ´ð°¸£»
£¨4£©¸ù¾ÝÈ«µÈÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬¿ÉµÃEMÓëEPµÄ¹ØÏµ£¬¸ù¾Ý¹´¹É¶¨Àí£¬¿ÉµÃ¹ØÓÚtµÄ·½³Ì£®

½â´ð £¨1£©Ö¤Ã÷£ºÈçͼ1£¬Á¬½ÓCM£¬
¡ß¡÷ABCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬CMÊÇб±ßÉϵÄÖÐÏߣ¬
¡àCM=AM£¬¡ÏMAC=¡ÏMCQ=45¡ã£¬
ÔÚ¡÷AMPºÍ¡÷CMQÖУ¬
$\left\{\begin{array}{l}{AM=CM}\\{¡ÏMAP=¡ÏMCQ}\\{AP=CQ}\end{array}\right.$£¬
¡à¡÷APM¡Õ¡÷CQM  £¨SAS£©£¬
¡àMP=MQ£»
£¨2£©Èçͼ2£º¹ýC×÷xÖá¡¢yÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪD¡¢F
¡ÏBCF+¡ÏACF=¡ÏACD+¡ÏACF£¬
¡à¡ÏBCF=¡ÏACF£®
ÔÚ¡÷ACDºÍ¡÷BCFÖУ¬
$\left\{\begin{array}{l}{AC=BC}\\{¡ÏADC=¡ÏBFC}\\{ACD=¡ÏBCF}\end{array}\right.$£¬
¡à¡÷CBF¡Õ¡÷CAD£¬
¡àCF=CD£¬BF=AD£¬
ÉèCF=CD=x£¬ÔòOF=OD=x£¬
¡àBF=3-x£¬AD=x-1£¬
¡à3-x=x-1£¬x=2£¬
¡àC£¨2£¬2£©£®
£¨3£©ÉèÅ×ÎïÏߵĽâÎöʽΪy=ax2+bx+c£¬
½«A¡¢B¡¢CµÄ×ø±ê´úÈ룬µÃ
$\left\{\begin{array}{l}{a+b+c=0}\\{c=3}\\{4a+2b+c=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=\frac{5}{2}}\\{b=-\frac{11}{2}}\\{c=3}\end{array}\right.$£¬
Å×ÎïÏߵĽâÎöʽΪy=$\frac{5}{2}$x2-$\frac{11}{2}$x+3£»
£¨4£©´æÔÚ£®
Èçͼ3£ºÁ¬½ÓEM£¬ÓÉ£¨1£©Öª£ºMP=MQ£¬¡ÏPMQ=90¡ã£®
Èô¡ÏEMP=45¡ã£¬Ôò¡ÏEMQ=45¡ã£¬Ôò¡÷EMP¡Õ¡÷EMQ£¬ËùÒÔEP=EQ£¬
ÓÖBCµÄ½âÎöʽΪy=-$\frac{1}{2}$x+3£¬
¡àE£¨6£¬0£©£¬CE=$\sqrt{20}=2\sqrt{5}$£¬
EQ=2$\sqrt{5}$+t£¬
¶øP$£¨1+\frac{1}{5}t£¬\frac{2}{5}t£©$£¬
¡àEP=$\sqrt{{{£¨5-\frac{1}{5}t£©}^2}+{{£¨\frac{2}{5}t£©}^2}}=\sqrt{\frac{1}{5}{t^2}-2t+25}$
¡à$\sqrt{\frac{1}{5}{t^2}-2t+25}=2\sqrt{5}+\frac{{\sqrt{5}}}{5}t$£¬
½âµÃ$t=\frac{5}{6}$
¡à$t=\frac{5}{6}$£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬ÀûÓÃÁËÈ«µÈÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¬ÀûÓù´¹É¶¨ÀíµÄ³ö¹ØÓÚtµÄ·½³ÌÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÒ»¸ö°ë¾¶Îª3cm£¬¸ßΪ30cmµÄԲͲÄÚÓÐË®£¬Ë®µÄ¸ß¶ÈΪ15cm£¬ÏÖ½«Ò»¸ù°ë¾¶Îª2cm£¬¸ß18cmµÄÖù×´Ìú¹÷·ÅÈëË®ÖУ¬ÎÊԲͲÄÚµÄË®ÉÏÉýÁ˶àÉÙÀåÃ×£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èôa=$\frac{2014}{2015}$£¬b=$\frac{2015}{2016}$£¬ÊÔÓÃͨ·ÖµÄ·½·¨±È½Ïa£¬bµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Ä³Ð£×éÖ¯ÆßÄ꼶ʦÉú½øÐÐÇïÓΣ¬Ñ§½ÈÁªÏµÂÃÓι«Ë¾Ìṩ³µÁ¾£¬¸Ã¹«Ë¾ÏÖÓÐ50×ùÓë35×ùÁ½ÖÖ³µÐÍ£¬Èç¹ûÓÃ35×ùµÄ³µ£¬»áÓÐ5ÈËû×ù£»Èç¹ûÈ«Óô»»³Ë50×ùµÄ³µ£¬Ôò¿ÉÉÙÓÃ2Á¾³µ£¬¶øÇÒ¶à³ö15¸ö×ùλ£®
£¨1£©ÎʸÃУһ¹²ÓжàÉÙÃûʦÉú²Î¼ÓÁËÕâ´Î»î¶¯£¿
£¨2£©Èô35×ù³µµÄÈÕ×â½ðΪ250Ôª/Á¾£¬50×ù³µµÄÈÕ×â½ðΪ320Ôª/Á¾£¬ÔÚ¼¸ÖÖ×â³µ·½°¸ÖУ¬ÓÐÄÄÖÖ·½°¸ÄÜʹµÃ×ùλ¸ÕºÃ£¿ÓÃÕâÖÖ·½°¸Ñ§Ð£Òª³ö¶àÉÙÈÕ×â½ð£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖª¼×µØº£°Î11Ã×£¬Òҵغ£°Î30Ã×£¬±ûµØº£°Î-11Ã×£®
£¨1£©Èô°Ñ¼×µØµÄ¸ß¶È¼ÇΪ0Ã×£¬ÔòÒҵغͱûµØµÄ¸ß¶È¸÷¼ÇΪ¶àÉÙÃ×£¿
£¨2£©Èô°ÑÒҵصĸ߶ȼÇΪ0Ã×£¬Ôò¼×µØºÍ±ûµØµÄ¸ß¶È¸÷¼ÇΪ¶àÉÙÃ×£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èçͼ£¬½«Rt¡÷ABCÈÆÖ±½Ç¶¥µãC˳ʱÕëÐýתһ¶¨µÄ½Ç¶Èµ½¡÷DECµÄλÖã¬ÈôEµãÔÚAB±ßÉÏ£¬ÇÒ¡ÏDCB=160¡ã£¬Ôò¡ÏAED=70¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®¶¨Ò壺ÔÚÆ½ÃæÄÚ£¬ÎÒÃǰѼÈÓдóСÓÖÓз½ÏòµÄÁ¿½Ð×öÆ½ÃæÏòÁ¿£®Æ½ÃæÏòÁ¿¿ÉÒÔÓÃÓÐÏòÏ߶αíʾ£¬ÓÐÏòÏ߶εij¤¶È±íʾÏòÁ¿µÄ´óС£¬ÓÐÏòÏ߶εķ½Ïò±íʾÏòÁ¿µÄ·½Ïò£®ÆäÖдóСÏàµÈ£¬·½ÏòÏàͬµÄÏòÁ¿½Ð×öÏàµÈÏòÁ¿£®
ÈçÒÔÕý·½ÐÎABCDµÄËĸö¶¥µãÖÐijһµãΪÆðµã£¬ÁíÒ»¸ö¶¥µãΪÖÕµã×÷ÏòÁ¿£¬¿ÉÒÔ×÷³ö8¸ö²»Í¬µÄÏòÁ¿£º$\overrightarrow{AB}$¡¢$\overrightarrow{BA}$¡¢$\overrightarrow{AC}$¡¢$\overrightarrow{CA}$¡¢$\overrightarrow{AD}$¡¢$\overrightarrow{DA}$¡¢$\overrightarrow{BD}$¡¢$\overrightarrow{DB}$£¨ÓÉÓÚ$\overrightarrow{AB}$ºÍ$\overrightarrow{DC}$ÊÇÏàµÈÏòÁ¿£¬Òò´ËÖ»ËãÒ»¸ö£©£®

£¨1£©×÷Á½¸öÏàÁÚµÄÕý·½ÐΣ¨Èçͼһ£©£®ÒÔÆäÖеÄÒ»¸ö¶¥µãΪÆðµã£¬ÁíÒ»¸ö¶¥µãΪÖÕµã×÷ÏòÁ¿£¬¿ÉÒÔ×÷³ö²»Í¬ÏòÁ¿µÄ¸öÊý¼ÇΪf£¨2£©£¬ÊÔÇóf£¨2£©µÄÖµ£»
£¨2£©×÷n¸öÏàÁÚµÄÕý·½ÐΣ¨Èçͼ¶þ£©¡°Ò»×ÖÐÍ¡±ÅÅ¿ª£®ÒÔÆäÖеÄÒ»¸ö¶¥µãΪÆðµã£¬ÁíÒ»¸ö¶¥µãΪÖÕµã×÷ÏòÁ¿£¬¿ÉÒÔ×÷³ö²»Í¬ÏòÁ¿µÄ¸öÊý¼ÇΪf£¨n£©£¬ÊÔÇóf£¨n£©µÄÖµ£»
£¨3£©×÷2¡Á3¸öÏàÁÚµÄÕý·½ÐΣ¨ÈçͼÈý£©ÅÅ¿ª£®ÒÔÆäÖеÄÒ»¸ö¶¥µãΪÆðµã£¬ÁíÒ»¸ö¶¥µãΪÖÕµã×÷ÏòÁ¿£¬¿ÉÒÔ×÷³ö²»Í¬ÏòÁ¿µÄ¸öÊý¼ÇΪf£¨2¡Á3£©£¬ÊÔÇóf£¨2¡Á3£©µÄÖµ£»
£¨4£©×÷m¡Án¸öÏàÁÚµÄÕý·½ÐΣ¨ÈçͼËÄ£©ÅÅ¿ª£®ÒÔÆäÖеÄÒ»¸ö¶¥µãΪÆðµã£¬ÁíÒ»¸ö¶¥µãΪÖÕµã×÷ÏòÁ¿£¬¿ÉÒÔ×÷³ö²»Í¬ÏòÁ¿µÄ¸öÊý¼ÇΪf£¨m¡Án£©£¬ÊÔÇóf£¨m¡Án£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®·½³Ì£¨x+2£©2=4µÄ¸ùÊÇ£¨¡¡¡¡£©
A£®x1=4£¬x2=-4B£®x1=0£¬x2=-4C£®x1=0£¬x2=2D£®x1=0£¬x2=4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®´úÊýʽ3a+4b¿ÉÒÔ±íʾ²»Í¬µÄʵ¼ÊÒâÒ壬ÊÔ¾ÙʵÀý˵Ã÷£ºÒ»¸öÆ»¹ûµÄÖÊÁ¿ÊÇa£¬Ò»¸ö½Û×ÓµÄÖÊÁ¿ÊÇb£¬ÄÇô3¸öÆ»¹ûºÍ4¸ö½Û×ÓµÄÖÊÁ¿ºÍÊÇ3a+4b£¨´ð°¸²»Î¨Ò»£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸