精英家教网 > 初中数学 > 题目详情
12.如图,在矩形ABCD中,AB=6,BC=8,点E为AB的中点,点F为BC边上任意一点,将△BEF沿EF翻折,点B的对应点为B′,则当△B′CD面积最小时折痕EF的长为3$\sqrt{2}$.

分析 当△B′CD面积最小时,B′到CD的距离最小,即B′到AB的距离最大,当B′到AB的距离=EB′时,此时B′到AB的距离最大,即EB′⊥AB,根据折叠的性质得到BE=B′E,∠B=∠EB′F=∠B′EB=90°,推出四边形EBFB′是正方形,得到EF=$\sqrt{2}$BE,于是得到距离.

解答 解:当△B′CD面积最小时,B′到CD的距离最小,即B′到AB的距离最大,
∴当B′到AB的距离=EB′时,此时B′到AB的距离最大,
即EB′⊥AB,
∵将△BEF沿EF翻折,点B的对应点为B′,
∴BE=B′E,∠B=∠EB′F=∠B′EB=90°,
∴四边形EBFB′是正方形,
∴EF=$\sqrt{2}$BE,
∵点E为AB的中点,
∴BE=3,
∴EF=3$\sqrt{2}$,
∴当△B′CD面积最小时折痕EF的长为3$\sqrt{2}$,
故答案为:3$\sqrt{2}$.

点评 本题考查了翻折变换-折叠问题,矩形的性质,正方形的判定和性质,正确的作出图形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.如图,矩形ABCD的对角线AC,BD交于点O,AE⊥BD于点E,且∠DAE:∠BAE=2:1,AE=$\sqrt{3}$,则矩形ABCD的面积是4$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:-(-1)-$\root{3}{8}$+(π-3.14)0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,AB是⊙O的直径,AB=4$\sqrt{3}$,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.
(1)求证:CB是∠ECP的平分线;
(2)求证:CF=CE;
(3)当$\frac{CF}{CP}$=$\frac{3}{4}$时,求劣弧$\widehat{BC}$的长度(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,点B在反比例函数y=$\frac{4}{x}$(x>0)的图象上,点A,C分别在x轴、y轴正半轴上,且四边形OABC为正方形.
(1)求点B的坐标;
(2)点P是y=$\frac{4}{x}$在第一象限的图象上点B右侧一动点,且S△POB=S△AOB,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某地为了鼓励居民节约用水,决定实行两极收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小马家3月份用水24吨,交水费42元.4月份用水20吨,交水费32元.
(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;
(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;
(3)小马家5月份交水费47元,他家5月份用了多少吨水?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.已知一个菱形的两个顶点与一个正方形的两个顶点重合,并且这两个四边形没有公共边,菱形的面积为24cm2,正方形的面积为32cm2,则菱形的边长为$\sqrt{26}$或5cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.先化简,再求值:($\frac{{n}^{2}}{n-m}$-m-n)÷m2,其中m-n=$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,ABCD是长方形,AB=6,BC=8,CE=4,四边形BCEF的面积是30,那么三角形DEF的面积是多少?

查看答案和解析>>

同步练习册答案