精英家教网 > 初中数学 > 题目详情

【题目】已知三条互相平行的直线a、b、c,请问能否作出一个等边△ABC,使其三个顶点A、B、C分别在直线a、b、c上?(用“能”或“不能”填空).若能,请说明作图方法;若不能,请简要说明理由.

【答案】解:能, 如图,过点A作AD⊥b于D,再作AD′=AD,且∠D′AD=60°,
再作D′C⊥AD′交直线c于点C,以AC为半径,A点为圆心,
画弧交直线b于点B,△ABC即为所求.

【解析】直接作AD′=AD,且∠D′AD=60°,进而作D′C⊥AD′交直线c于点C,进而得出答案.
【考点精析】认真审题,首先需要了解平行线的性质(两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补),还要掌握等边三角形的性质(等边三角形的三个角都相等并且每个角都是60°)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】按下列程序计算,把答案填写在表格内,然后观察有什么规律,想一想:为什么会有这个规律?

(1)填写表内空格:

输入

-3

-2

-1

0

输出答案

9

(2)发现的规律是:输入数据x,则输出的答案是__________;

(3)为什么会有这个规律?请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线L1∥L2 , 圆O与L1和L2分别相切于点A和点B,点M和点N分别是L1和L2上的动点,MN沿L1和L2平移,圆O的半径为1,∠1=60°,当MN与圆相切时,AM的长度等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线L:y=-x+2x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点MA点以每秒1个单位的速度沿x轴向左移动.

(1)求A、B两点的坐标;

(2)△COM的面积SM的移动时间t之间的函数关系式;

(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售一种西装和领带,西装每套定价200元,领带每条定价40.国庆节期间商场决定开展促销活动,活动期间向客户提供两种优惠方案:

方案一:买一套西装送一条领带;

方案二:西装和领带都按定价的90%付款.

现某客户要到该商场购买西装20套,领带x.

1)若该客户按方案一购买,需付款多少元(用含x的式子表示)?若该客户按方案二购买,需付款多少元(用含x的式子表示)?

2)若,通过计算说明此时按哪种方案购买较为合算;

3)当时,你能给出一种更为省钱的购买方法吗?试写出你的购买方法和所需费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BC边上的垂直平分线DE与∠BAC的平分线交于点EEFABAB的延长线于点FEGAC于点G

求证:(1BFCG

2AB+AC2AF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E、F、G、H分别在菱形ABCD的四条边上,且BE=BF=DG=DH,连接EF,FG,GH,HE得到四边形EFGH.
(1)求证:四边形EFGH是矩形;
(2)设AB=a,∠A=60°,当BE为何值时,矩形EFGH的面积最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.

(1)求证:DEF是等腰三角形;

(2)当∠A=40°时,求∠DEF的度数;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程(x﹣3)(x﹣2)=m2
(1)求证:对于任意实数m,方程总有两个不相等的实数根;
(2)若方程的一个根是1,求m的值及方程的另一个根.

查看答案和解析>>

同步练习册答案