精英家教网 > 初中数学 > 题目详情

【题目】矗立在莲花山的邓小平雕像气宇轩昂,这是中国第一座以城市雕塑形式竖立的邓小平雕像。铜像由像体AD和底座CD两部分组成。某校数学课外小组在地面的点B处测得点A的仰角∠ABC=67°,点D的仰角∠DBC=30°,已知CD=2米,求像体AD的高度。(最后结果精确到1米,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.4,≈1.7)

【答案】6米

【解析】分析:在RtDBCBC=求得BC的长,在RtABC中由AC=BCtanABC求得AC的长,根据AD=AC-CD可得答案.

详解∵在RtDBC中,∠DBC=30°,且CD=2米,

BC==

∵在RtABC中,∠ABC=67°

AC=BCtanABC=2tan67°≈8.16,

AD=AC-2≈6,

答:像体AD的高度约为6米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图:在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,有下列结论:①∠AED=∠CED;②OE=OD;③△BEH≌△HDF;④BC﹣CF=2EH;⑤AB=FH.其中正确的结论有(  )

A. 5个 B. 4个 C. 3个 D. 2个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将平行四边形ABCD折叠,使顶点D落在AB边上的点E处,折痕为AF,下列说法中不正确的是(  )

A.EFBCB.EFAEC.BECFD.AFBC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,AB=5,AC=3,点DBC上一动点,连接AD,将ACD沿AD折叠,点C落在点E处,连接DEAB于点F,当DEB是直角三角形时,DF的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情景:如图1,在等腰直角三角形ABC中∠ACB90°BCa.将AB绕点B顺时针旋转90°得到线段BD,连接CD,过点D作△BCDBC边上的高DE

易证△ABC≌△BDE,从而得到△BCD的面积为

简单应用:如图2,在RtABC中,∠ACB90°BCa,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含a的代数式表示△BCD的面积,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 已知,如图,点D是△ABC的边AB的中点,四边形BCED是平行四边形.

1)求证:四边形ADCE是平行四边形;

2)在△ABC中,若ACBC,则四边形ADCE   ;(只写结论,不需证明)

3)在(2)的条件下,当ACBC时,求证:四边形ADCE是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点EC在线段BF上,BEECCFABDE,∠ACB=∠F

(1)求证:△ABC≌△DEF

(2)求证:四边形ACFD为平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了对一棵倾斜的古杉树AB进行保护,需测量其长度,如图,在地面上选取一点C,测得∠ACB=45AC=24 m,∠BAC=66.5,求这棵古杉树AB的长度.(结果精确到0.1 m.参考数据:sin66.5≈0.92,cos66.5≈0.40,tan66.5≈2.30)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加_____m.

查看答案和解析>>

同步练习册答案