精英家教网 > 初中数学 > 题目详情

【题目】如图:在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,有下列结论:①∠AED=∠CED;②OE=OD;③△BEH≌△HDF;④BC﹣CF=2EH;⑤AB=FH.其中正确的结论有(  )

A. 5个 B. 4个 C. 3个 D. 2个

【答案】B

【解析】分析: 先证明△ABE和△ADH是等腰直角三角形,得出AD=AEAB=AH=DH=DC得出∠ADE=AED即可得出①正确;先证出OE=OH同理:OD=OH,得出OE=OD②正确;由ASA证出△BEH≌△HDF,得出③正确;过HHKBCK可知HK=KE得出BC=2HK+2HE=FC+2HE得出④正确.

详解: ∵四边形ABCD是矩形,

AB=DC,ADBC

∴∠ADE=CED

∵∠BAD的平分线交BC于点E

∴△ABE和△ADH是等腰直角三角形,

AD=AEAB=AH=DH=DC

∴∠ADE=AED

∴∠AED=CED

∴①正确;

∴∠OHE=AED

OE=OH

同理:OD=OH

OE=OD

∴②正确;

∴∠HBE=FHD

在△BEH和△HDF,

∴△BEH≌△HDF(ASA),

∴③正确;

BCCF=2HE正确,过HHKBCK

可知HK=KE

由上知HE=EC

HEEC

BC=2HK+2HE=FC+2HE

∴④正确;

⑤不正确;

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车,恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.

(1)求每辆大客车和每辆小客车的乘客座位数;

(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,且所有参加活动的师生都有座位,求租用小客车数量的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】高新一中初中校区名校+教育联合体主题美术展在西安高新区都市之门举办,学校组织七年级部分学生乘车参观展览,若用2辆小客车和1辆大客车,则每次可运送学生95人;若用1辆小客车和2辆大客车,则每次可运送学生115(注意:每辆小客车和大客车都坐满)

(1)每辆小客车和大客车各能坐多少人?

(2)若现在要运送500名学生,计划租用小客车辆,大客车辆,一次送完,且恰好每辆车都坐满,请你帮学校设计出所有的租车方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知有9张卡片分别写有19这就个数字将它们的背面朝上洗匀后任意抽出一张记卡片上的数字为a若数a使关于x的不等式组 有解且使函数 x≥7的范围内y随着x的增大而增大则这9个数中满足条件的a的值的和是(  )

A. 10 B. 11 C. 12 D. 13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题中,是假命题的是( )

A. 在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形

B. 在△ABC中,若a2=(b+c) (b-c),则△ABC是直角三角形

C. 在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形

D. 在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解青少年形体情况,现随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对测评数据作了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:

(1)请将两幅统计图补充完整;

(2)请问这次被抽查形体测评的学生一共是多少人?

(3)如果全市有5万名初中生,那么全市初中生中,坐姿和站姿不良的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在眉山市开展城乡综合治理的活动中,需要将三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场两地进行处理.已知运往地的数量比运往地的数量的2倍少10立方米.

1)求运往两地的数量各是多少立方米?

2)若地运往立方米为整数),地运往30立方米,地运往地的数量小于地运往地的2倍.其余全部运往地,且地运往地不超过12立方米,则两地运往两地哪几种方案?

3)已知从三地把垃圾运往两地处理所需费用如下表:

运往地(元立方米)

22

20

20

运往地(元立方米)

20

22

21

在(2)的条件下,请说明哪种方案的总费用最少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=-x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E.

(1)求直线AD的解析式;

(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;

(3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM重合部分的面积是□APQM面积的时,求□APQM面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矗立在莲花山的邓小平雕像气宇轩昂,这是中国第一座以城市雕塑形式竖立的邓小平雕像。铜像由像体AD和底座CD两部分组成。某校数学课外小组在地面的点B处测得点A的仰角∠ABC=67°,点D的仰角∠DBC=30°,已知CD=2米,求像体AD的高度。(最后结果精确到1米,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.4,≈1.7)

查看答案和解析>>

同步练习册答案