【题目】在眉山市开展城乡综合治理的活动中,需要将、、三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场、两地进行处理.已知运往地的数量比运往地的数量的2倍少10立方米.
(1)求运往两地的数量各是多少立方米?
(2)若地运往地立方米为整数),地运往地30立方米,地运往地的数量小于地运往地的2倍.其余全部运往地,且地运往地不超过12立方米,则、两地运往、两地哪几种方案?
(3)已知从、、三地把垃圾运往、两地处理所需费用如下表:
地 | 地 | 地 | |
运往地(元立方米) | 22 | 20 | 20 |
运往地(元立方米) | 20 | 22 | 21 |
在(2)的条件下,请说明哪种方案的总费用最少?
【答案】(1)共运往D地90立方米,运往E地50立方米;(2)见解析;(3)第一种方案的总费用最少.
【解析】
(1)设运往E地x立方米,由题意可列出关于x的方程,求出x的值即可;
(2)由题意列出关于a的一元一次不等式组,求出a的取值范围,再根据a是整数可得出a的值,进而可求出答案;
(3)根据(1)中的两种方案求出其费用即可.
(1)设运往E地x立方米,由题意得,x+2x-10=140,
解得:x=50,
∴2x-10=90.
答:共运往D地90立方米,运往E地50立方米;
(2)由题意可得,
,
解得:20<a≤22,
∵a是整数,
∴a=21或22,
∴有如下两种方案:
第一种:A地运往D地21立方米,运往E地29立方米;
C地运往D地39立方米,运往E地11立方米;
第二种:A地运往D地22立方米,运往E地28立方米;
C地运往D地38立方米,运往E地12立方米;
(3)第一种方案共需费用:
22×21+20×29+30×20+22×10+39×20+11×21=2873(元),
第二种方案共需费用:
22×22+28×20+30×20+22×10+38×20+12×21=2876(元),
所以,第一种方案的总费用最少.
科目:初中数学 来源: 题型:
【题目】已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)
(1)画出△ABC向下平移4个单位,再向左平移1个单位得到的△A1B1C1,并直接写出C1点的坐标;
(2)作出△ABC绕点A顺时针方向旋转90°后得到的△A2B2C2,并直接写出C2点的坐标;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】莒南县欲从某师范院校招聘一名“特岗教师”,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:
候选人 | 甲 | 乙 | 丙 | 丁 | |
测试成绩 | 面试 | 86 | 91 | 90 | 83 |
笔试 | 90 | 83 | 83 | 92 |
根据录用程序,作为人民教师面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,你认为将录取( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,有下列结论:①∠AED=∠CED;②OE=OD;③△BEH≌△HDF;④BC﹣CF=2EH;⑤AB=FH.其中正确的结论有( )
A. 5个 B. 4个 C. 3个 D. 2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.
(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图.
(2)根据三视图,这个组合几何体的表面积为多少个平方单位?(包括底面积)
(3)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据下列证明过程填空:
如图,BD⊥AC,EF⊥AC,D、F分别为垂足,且∠1=∠4,求证:∠ADG=∠C
证明:∵BD⊥AC,EF⊥AC
∴∠2=∠3=90°
∴BD∥EF ( )
∴∠4=_____ ( )
∵∠1=∠4
∴∠1=_____
∴DG∥BC ( )
∴∠ADG=∠C( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k棵树种植在点Pk(xk,yk)处,其中x1=1,y1=1,当k≥2时,, ,[a]表示非负实数a的整数部分,例如[2.6]=2,[0.2]=0.按此方案,则第2018棵树种植点的坐标为( )
A.(3,2018)B.(2,2019)C.(2,403)D.(3,404)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将平行四边形ABCD折叠,使顶点D落在AB边上的点E处,折痕为AF,下列说法中不正确的是( )
A.EF∥BCB.EF=AEC.BE=CFD.AF=BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点E,C在线段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.
(1)求证:△ABC≌△DEF;
(2)求证:四边形ACFD为平行四边形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com