分析 作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值,根据勾股定理求出AD,再根据面积不变求出BH即可.
解答
解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.
∵AB=AC,D是BC边上的中点,
∴AD是∠BAC的平分线,
∴M′H=M′N′,
∴BH是点B到直线AC的最短距离(垂线段最短),
∵AB=AC=13,BC=10,D是BC边上的中点,
∴AD⊥BC,
∴AD=12,
∵S△ABC=$\frac{1}{2}$AC×BH=$\frac{1}{2}$BC×AD,
∴13×BH=10×12,
解得:BH=$\frac{120}{13}$,
故答案为:$\frac{120}{13}$.
点评 本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过三线合一的性质,垂线段最短,确定线段和的最小值.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{5}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com