【题目】已知:如图,△ABC中,∠A=90°,BC的垂直平分线DE交BC于点E,交AC于点D.
(1)若∠C=35°,求∠DBA的度数;
(2)若△ABD的周长为30,AC=18,求AB的长.
【答案】
(1)解:∵DE是BC的垂直平分线,
∴CD=BD,
∴∠CBD=∠C=35°,
∴∠ADB=∠C+∠CBD=70°,
∵△ABC中,∠A=90°,
∴∠DBA=90°﹣∠BDA=20°;
(2)解:∵△ABD的周长为30,CD=BD,
∴AB+AD+BD=AB+AD+CD=AB+AC=30,
∵AC=18,
∴AB=30﹣18=12.
【解析】(1)抓住题中关键的已知条件BC的垂直平分线DE,得出CD=BD,可求出∠CBD、∠C的度数,再根据直角三角形两锐角互余,求出∠ABC的度数,即可求得∠DBA的度数。
(2)由(1)的证明过程可知,CD=BD,因此△ABD的周长=AC+AB=30,即可求出AB的长。
【考点精析】本题主要考查了三角形的内角和外角和线段垂直平分线的性质的相关知识点,需要掌握三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角;垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,为边的中点.将绕点顺时针旋转,点的对应点为,点的对应点为,过点作交于点,连接、交于点.现有下列结论:①;②;③;④点为的外心.
其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司共有三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图.
各部门人数及每人所创年利润统计表
部门 | 员工人数 | 每人所创的年利润/万元 |
A | 5 | 10 |
B | 8 | |
C | 5 |
(1)①在扇形图中,C部门所对应的圆心角的度数为___________;
②在统计表中,___________,___________;
(2)求这个公司平均每人所创年利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列调查中,最适合采用全面调查的是( )
A.对南宁市中学生在“停课不停学”期间,每天锻炼时间的调查
B.对南宁市市民知晓“礼让斑马线”行车要求情况的调查
C.对端午节期间市场上粽子的质量情况调查
D.对你所在的班级同学的身高情况的调查
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,点P从点A出发,沿AB方向以每秒 cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′,设Q点运动的时间为t秒,若四边形QPCP′为菱形,则t的值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com