【题目】如图,将一个等腰直角三角形按图中方式依次翻折,若DE=a,DC=b,则下列说法:①DC′平分∠BDE;②BC的长为2a+b;③△BC′D是等腰三角形;④△CED的周长等于BC的长.其中正确的是()
A.①②③B.②④C.②③④D.③④
【答案】C
【解析】
根据折叠前后计算得到∠BDC′=22.5°,∠C′DE=45°,可判断①;
根据折叠的性质知,BE=AB=AC=a+b,EC=DE=b,由此可表示出BC的长,可判断②;
分别表示出BC′和DC′的长,可判断③;
表示出△CED的周长=CE+DE+CD= a+b+a=2a+b,可判断④.
解:∵∠BDC′=22.5°,∠C′DE=45°,
∴①错误;
根据折叠的性质知,BE=AB=AC=a+b,EC=DE=b,
∴BC=BE+EC=a+b+a=2a+b,
∴②正确;
∵△C′ED≌△CED,且都是等腰直角三角形,
∴C′D=CD=b,C′E=CE=a,
∴BC′=BE- C′E=a+b-a=b,
∴BC′=DC′,
∴△BC′D是等腰三角形;
故③正确;
∵△CED的周长=CE+DE+CD= a+b+a=2a+b =BC,
故④正确.
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,在 Rt△ABC 中,∠C=90°,AC=8cm,BC=6cm,M 在 AC上,且AM=6cm,过点 A(与 BC 在 AC 同侧)作射线 AN⊥AC,若动点 P 从点 A 出发,沿射线 AN 匀速运动,运动速度为 1cm/s,设点 P 运动时间为 t 秒.
(1)经过 秒时,Rt△AMP 是等腰直角三角形?
(2)经过几秒时,PM⊥MB?
(3)经过几秒时,PM⊥AB?
(4)当△BMP 是等腰三角形时,直接写出 t 的所有值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为的等边三角形的顶点分别在边,上当在边上运动时,随之在边上运动,等边三角形的形状保持不变,运动过程中,点到点的最大距离为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 1,在矩形 ABCD 中,动点 E 从点 B 出发,沿 B→C→D→A 方向运动至点 A 处停止,设点 E 运动的路程为 x,△ABE 的面积为 y,如果 y 关于 x 的函数图象如图 2 所示,则当 x=10 时,点 E应运动到( )
A.A 处B.B 处C.C 处D.D 处
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线 y=2x+4 与 x 轴相交于点 A,与 y 轴相交于点 B.
(1)求 A,B 两点的坐标;
(2)过 B 点作直线 BP 与 x 轴相交于 P,且使 OP=2OA,求直线 BP 的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如图所示尚不完整的统计图.
根据图中信息解答下列问题:
(1)这次接受调查的市民总人数是________;
(2)扇形统计图中,“电视”所在扇形的圆心角的度数是________;
(3)请补全条形统计图;
(4)若该市约有80万人,请你估计其中将“电脑上网和手机上网”作为“获取新闻的最主要途径”的总人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCD中,AB=3,BC=4.点P在线段AB或线段AD上,点Q中线段BC上,沿直线PQ将矩形折叠,点B的对应点是点E.
(1)如图1,点P、点E在线段AD上,点Q在线段BC上,连接BP、EQ.
①求证:四边形PBQE是菱形.
②四边形PBQE是菱形时,AP的取值范围是 .
(2)如图2,点P在线段AB上,点Q在线段AD上,点E在线段AD上,若AE=,求折痕PQ的长.
(3)点P在线段AB,AP=2,点Q在线段BC上,连AE、CE.请直接写出四边形AECD的面积的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(0,3),B(,0),AB =6,作∠DBO=∠ABO,点H为y轴上的点,∠CAH=∠BAO,BD交y轴于点E,直线DO交AC于点C.
(1)证明:△ABE为等边三角形;
(2)若CD⊥AB于点F,求线段CD的长;
(3)动点P从A出发,沿A﹣O﹣B路线运动,速度为1个单位长度每秒,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A路线运动,速度为2个单位长度每秒,到A点处停止运动.两点同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间时△OPM与△OQN全等?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com