【题目】如图,在 Rt△ABC 中,∠C=90°,AC=8cm,BC=6cm,M 在 AC上,且AM=6cm,过点 A(与 BC 在 AC 同侧)作射线 AN⊥AC,若动点 P 从点 A 出发,沿射线 AN 匀速运动,运动速度为 1cm/s,设点 P 运动时间为 t 秒.
(1)经过 秒时,Rt△AMP 是等腰直角三角形?
(2)经过几秒时,PM⊥MB?
(3)经过几秒时,PM⊥AB?
(4)当△BMP 是等腰三角形时,直接写出 t 的所有值.
【答案】(1)6;(2)2;(3)8;(4)2或.
【解析】
(1)得出腰时AM=AP,即可得出答案;
(2)根据垂直的定义和同角的余角相等得到∠CBM=∠AMP,证明△CBM≌△AMP,根据全等三角形的性质得到 AP=CM=2,根据题意得到答案;
(3)证明△APM≌△CAB,根据全等三角形的性质得到 AP=CA=8,根据题意得到答案;
(4)分 MB=MP 和 PB=PM 两种情况,根据全等三角形的性质,勾股定理计算即可.
(1)当 Rt△AMP 是等腰直角三角形时,AP=AM=6cm,
∴t=6÷1=6(s),
故答案为:6;
(2)当 PM⊥MB 时,∠BMP=90°,
∴∠BMC+∠AMP=90°,又∠BMC+∠CBM=90°,
∴∠CBM=∠AMP,
在△CBM 和△AMP 中,
,
∴△CBM≌△AMP(ASA),
∴AP=CM=2,
∴t=2,即经过 2 秒时,PM⊥MB;
(3)当 PM⊥AB 时,如图1,∠PHA=90°,
∴∠HPA+∠HAP=90°,又∠HAP+∠CAB=90°,
∴∠APM=∠CAB,
在△APM 和△CAB 中,
,
∴△APM≌△CAB(ASA),
∴AP=CA=8,
∴t=8,
∴经过 8 秒时,PM⊥AB;
(4)根据勾股定理得,BM=,BP 的最小值为 8,
∵<8,
∴BM≠BP,
当 MB=MP 时,
在 Rt△BCM 和 Rt△MAP 中,
,
∴Rt△BCM≌Rt△MAP(HL),
∴AP=CM=2, 则 t=2,
当 PB=PM 时,如图2,作BF⊥AN于 F, 则四边形 BCAF 为矩形,
∴BF=CA=8,AF=BC=6,
∴PF=6﹣t,
由勾股定理得,BP2=PF2+BF2,MP2=AM2+AP2,
∴PF2+BF2=AM2+AP2,即(6﹣t)2+82=62+t2, 解得,t=,
∴当△BMP 是等腰三角形时,t=2 或.
科目:初中数学 来源: 题型:
【题目】多好佳水果店在批发市场购买某种水果销售,第一次用1500元购进若干千克,并以每千克9元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1694元所购买的水果比第一次多20千克,以每千克10元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价45%售完剩余的水果.
(1)第一次水果的进价是每千克多少元?
(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y= 的图象上,OA=1,OC=6,则正方形ADEF的边长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.
(1)求∠F的度数;
(2)若CD=2,求DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是将抛物线 平移后得到的抛物线,其对称轴为 ,与x轴的一个交点为A ,另一交点为B,与y轴交点为C.
(1)求抛物线的函数表达式;
(2)若点 为抛物线上一点,且BC⊥NC,求点N的坐标;
(3)点P是抛物线上一点,点Q是一次函数 的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P、Q的坐标,若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了“让所有的孩子都能上得起来,都能上好学”,国家自2007年起出台了一系列“资助贫困学生”的政策,其中包括向经济困难的学生免费提供教科书的政策.为确保这项工作顺利实施,学校需要调查学生的家庭情况.以下是某市城郊一所中学甲、乙两个班的调查结果,整理成表(一)和图(一):
城镇户口 (非低保) | 农村户口 | 城镇低保 | 总人数 | |
甲班/人 | 20 | 5 | 50 | |
乙班/人 | 28 | 22 | 4 |
(1)将表(一)和图(一)中的空缺部分补全;
(2)现要预定2009年下学期的教科书,全额100元.若农村户口学生可全免,城镇低保的学生可减免城镇户口(非低保)学生全额交费.求乙班应交书费多少元?甲班受到国家资助教科书的学生占全班人数的百分比是多少?
(3)五四青年节时,校团委免费赠送给甲、乙两班若干册科普类、文学类及艺术类三种图书,其中文学类图书有15册,三种图书所占比例如图(二)所示,求艺术类图书共有多少册?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某大型超市投入15000元资金购进、两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:
类别/单价 | 成本价(元/箱) | 销售价(元/箱) |
A品牌 | 20 | 32 |
B品牌 | 35 | 50 |
(1)该大型超市购进、品牌矿泉水各多少箱?
(2)全部销售完600箱矿泉水,该超市共获得多少利润?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足若 = ,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.
(1)求证:△ADF∽△AED;
(2)求FG的长;
(3)求tan∠E的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com