精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y= 的图象上,OA=1,OC=6,则正方形ADEF的边长为

【答案】2
【解析】解:∵OA=1,OC=6,

∴B点坐标为(1,6),

∴k=1×6=6,

∴反比例函数解析式为y=

设AD=t,则OD=1+t,

∴E点坐标为(1+t,t),

∴(1+t)t=6,

整理为t2+t﹣6=0,

解得t1=﹣3(舍去),t2=2,

∴正方形ADEF的边长为2.

故答案为:2.

先确定B点坐标(1,6),根据反比例函数图象上点的坐标特征得到k=6,则反比例函数解析式为y= ,设AD=t,则OD=1+t,所以E点坐标为(1+t,t),再利用根据反比例函数图象上点的坐标特征得(1+t)t=6,利用因式分解法可求出t的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图.在△ABCABAC,∠ABC=60°,延长BA至点D延长CB至点E使BEAD连接CDAE

(1)求证:△ACE≌△CBD

(2)如图②,延长EACD于点G则∠CGE的度数是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,对于任意三点的“矩面积”,给出如下定义:“水平底”是任意两点横坐标差的最大值;“铅垂高”是任意两点纵坐标差的最大值,则“矩面积”.例如:三点的坐标分别为,则“水平底”,“铅垂高”,“矩面积”.根据所给定义解决下面的问题:

1)若点的坐标分别为,求这三点的“矩面积”

2)若点,含有的式子表示这三点的“矩面积”(结果需化简)

3)已知点,在轴上是否存在点,使这三点的“矩面积”20?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,∠A=60°BDBE三等分∠ABCCDCE三等分∠ACB,连接DE,则∠BDE=_____________°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3 . 若h1=2,h2=1,则正方形ABCD的面积为(
A.9
B.10
C.13
D.25

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1 , 此时AP1= ;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2 , 此时AP2=1+ ;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3 , 此时AP3=2+ ;…,按此规律继续旋转,直至得到点P2015为止.则AP2015=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,火车站、码头分别位于A,B两点,直线a和b分别表示铁路与河流.

(1)从火车站到码头怎样走最近,画图并说明理由;

(2)从码头到铁路怎样走最近,画图并说明理由;

(3)从火车站到河流怎样走最近,画图并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 RtABC 中,∠C=90°,AC=8cm,BC=6cm,M AC上,且AM=6cm,过点 A( BC AC 同侧)作射线 ANAC,若动点 P 从点 A 出发,沿射线 AN 匀速运动,运动速度为 1cm/s,设点 P 运动时间为 t 秒.

(1)经过 秒时,RtAMP 是等腰直角三角形?

(2)经过几秒时,PM⊥MB?

(3)经过几秒时,PM⊥AB?

(4)△BMP 是等腰三角形时,直接写出 t 的所有值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.

(1)甲、乙两种书柜每个的价格分别是多少元?

(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.

查看答案和解析>>

同步练习册答案