精英家教网 > 初中数学 > 题目详情

【题目】如图,已知ABC中,∠A=60°BDBE三等分∠ABCCDCE三等分∠ACB,连接DE,则∠BDE=_____________°

【答案】50°

【解析】

根据三角形内角和为180°,设∠EBC=x∠ECB=y,根据BDBE三等分∠ABCCDCE三等分∠ACB,可得到∠BDC的度数,再得到DE∠BDC角平分线即可求解.

∵在△ABC中,∠A=60°

∠ABC+∠ACB=180°-∠A=120°

∠EBC=x∠ECB=y,根据BDBE三等分∠ABCCDCE三等分∠ACB

3x+3y=120°

x+y=40°

∠DBC+∠DCB= 2x+2y=80°

∴在△DBC中,∠BDC=180°-(∠DBC+∠DCB)=100°

BECE∠DBC∠DCB的角平分线

DE∠BDC的角平分线,

∠BDE=∠BDC=50°

故答案为:50

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.你能利用小明测量的数据算出电线杆AB的高吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】多好佳水果店在批发市场购买某种水果销售,第一次用1500元购进若干千克,并以每千克9元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1694元所购买的水果比第一次多20千克,以每千克10元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价45%售完剩余的水果.

(1)第一次水果的进价是每千克多少元?

(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在Rt△ABC中,∠ACB=90,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点按顺时针方向旋转90后得CE,连接EF.
(1)求证:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一次函数y=(m+1)x+m的图象过第一、三、四象限,则函数y=mx2﹣mx(
A.有最大值
B.有最大值﹣
C.有最小值
D.有最小值﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在△ABC中,∠A=90
(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).
(2)若∠B=60,AB=3,求⊙P的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y= 的图象上,OA=1,OC=6,则正方形ADEF的边长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,点DE分别在边BCAC上,且DE∥AB,过点EEF⊥DE,交BC的延长线于点F.

1)求∠F的度数;

2)若CD=2,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足若 = ,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.
(1)求证:△ADF∽△AED;
(2)求FG的长;
(3)求tan∠E的值.

查看答案和解析>>

同步练习册答案