精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足若 = ,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.
(1)求证:△ADF∽△AED;
(2)求FG的长;
(3)求tan∠E的值.

【答案】
(1)证明:∵AB是⊙O的直径,弦CD⊥AB,

∴DG=CG,

∴由垂径定理可知:

∴∠ADF=∠AED,

∵∠FAD=∠DAE(公共角),

∴△ADF∽△AED


(2)解:∵ = ,CF=2,

∴FD=6,

∴CD=DF+CF=8,

∴由垂径定理可知:CG=DG=4,

∴FG=CG﹣CF=2


(3)解:∵AF=3,FG=2,

在△AFG中,

∴由勾股定理可知:AG= =

tan∠E=tan∠ADF= =


【解析】(1)AB是⊙O的直径,弦CD⊥AB,DG=CG,由垂径定理可知: ,从而可知∠ADF=∠AED,从而可证明△ADF∽△AED.(2)由于 = ,所以CF=2,FD=6,从而CD=DF+CF=8,由垂径定理可知CD=DG=4,从而求出FG的长度;(3)由于AF=3,FG=2,由勾股定理可知:AG= = ,从而可知tan∠E=tan∠ADF= =
【考点精析】关于本题考查的勾股定理的概念和垂径定理,需要了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,∠A=60°BDBE三等分∠ABCCDCE三等分∠ACB,连接DE,则∠BDE=_____________°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 RtABC 中,∠C=90°,AC=8cm,BC=6cm,M AC上,且AM=6cm,过点 A( BC AC 同侧)作射线 ANAC,若动点 P 从点 A 出发,沿射线 AN 匀速运动,运动速度为 1cm/s,设点 P 运动时间为 t 秒.

(1)经过 秒时,RtAMP 是等腰直角三角形?

(2)经过几秒时,PM⊥MB?

(3)经过几秒时,PM⊥AB?

(4)△BMP 是等腰三角形时,直接写出 t 的所有值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明同学在AB两家超市发现他看中的随身听和书包的单价都相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.

(1)求小明看中的随身听和书包单价各是多少元?

(2)假日期间商家开展促销活动,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(购物满100元返购物券30元,购物满200元返购物券60元,以此类推;不足100元不返券,购物券可通用).小明只有400元钱,他能买到一只随身听和一个书包吗?若能,选择在哪一家购买更省钱.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】南昌的雾霾引起了小张对环保问题的重视.一次旅游小张思考了一个问题.从某地到南昌,若乘火车需要小时,若乘汽车需要小时.这两种交通工具平均每小时二氧化碳的排放量之和为千克,火车全程二氧化碳的排放总量比汽车的多千克,分别求火车和汽车平均每小时二氧化碳的排放量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县为了落实中央的强基惠民工程计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成若乙队单独施工则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15那么余下的工程由甲队单独完成还需5

1)这项工程的规定时间是多少天?

2)已知甲队每天的施工费用为6500乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.

(1)甲、乙两种书柜每个的价格分别是多少元?

(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).

发现:如图2,当点P恰好落在BC边上时,求a的值即阴影部分的面积;
拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.
探究:当半圆K与矩形ABCD的边相切时,直接写出sinα的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是

查看答案和解析>>

同步练习册答案