精英家教网 > 初中数学 > 题目详情

【题目】多好佳水果店在批发市场购买某种水果销售,第一次用1500元购进若干千克,并以每千克9元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1694元所购买的水果比第一次多20千克,以每千克10元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价45%售完剩余的水果.

(1)第一次水果的进价是每千克多少元?

(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?

【答案】(1) 2元;(2) 盈利了8241元.

【解析】

(1)设第一次水果的进价是每千克x元,则第二次水果的进价是每千克1.1x元,根据数量=总价÷单价结合第二次比第一次多购进20千克,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)利用数量=总价÷单价可求出第一次购进水果数量,由总利润=每千克利润×销售数量可求出第一次购进水果的销售利润,同理可求出第二次购进水果的销售利润,将二者相加即可得出结论.

解:(1)设第一次水果的进价是每千克x元,则第二次水果的进价是每千克1.1x元,

根据题意,得:=20,

解得:x=2,

经检验,x=2是原方程的解,且符合题意.

答:第一次水果的进价是每千克2元.

(2)第一次购买水果1500÷2=750(千克),

第一次利润为750×(9﹣2)=5250(元).

第二次购买水果750+20=770(千克),

第二次利润为100×(10﹣2.2)+(770﹣100)×(10×0.55﹣2.2)=2991(元).

5250+2991=8241(元).

答:该水果店在这两次销售中,总体上是盈利了,盈利了8241元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,隧道的截面由半圆和长方形构成,长方形的长BC为8m,宽AB为1m,该隧道内设双向行驶的车道(共有2条车道),若现有一辆货运卡车高4m,宽2.3m。则这辆货运卡车能否通过该隧道?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC△DBE中,BC=BE,还需要添加两个条件才能使△ABC≌△DBE,则不能添加的一组条件是(

A. AC=DE,∠C=∠E B. BD=AB,AC=DE C. AB=DB,∠A=∠D D. ∠C=∠E,∠A=∠D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将含45°角的三角板的直角顶点R放在直线l上,分别过两锐角的顶点M,N作l的垂线,垂足分别为P、Q,
(1)如图1,观察图1可知:与NQ相等的线段是 , 与∠NPQ相等的角是

(2)直角△ABC中,∠B=90°,在AB边上任取一点D,连接CD,分别以AC,DC为边作正方形ACEF和正方形CDGH,如图2,过E,H分别作BC所在直线的垂线,垂足分别为K,L.试探究EK与HL之间的数量关系,并证明你的结论.

(3)直角△ABC中,∠B=90°,在AB边上任取一点D,连接CD,分别以AC,DC为边作矩形ACEF和矩形CDGH,连接EH交BC所在的直线于点T,如图3,如果AC=kCE,CD=kCH,试探究TE与TH之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.

(1)求证:△ACD≌△CBE;

(2)若AD=12,DE=7,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的长度构造一组正方形(如下图),再分别依次从左到右取2个,3个,4个,5个正方形拼成如下长方形并记为①,②,③,④,相应长方形的周长如下表所示:

若按此规律继续作长方形,则序号为⑧的长方形周长是( )

A. 288 B. 178 C. 28 D. 110

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线经过点

1求直线的解析式

2若直线与直线相交于点求点的坐标

3根据图象直接写出关于的不等式的解集

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下列各题:
(1)如图,已知直线AB与⊙O相切于点C,且AC=BC,求证:OA=OB.
(2)如图,矩形ABCD的两条对角线相交于点O,∠AOD=120°,AB=3,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.
(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2 ,求BC的长.

查看答案和解析>>

同步练习册答案