精英家教网 > 初中数学 > 题目详情

【题目】不等式 的解集在数轴上表示为(
A.
B.
C.
D.

【答案】C
【解析】解:解不等式2x﹣1≥1,得:x≥1,
解不等式x﹣2<0,得:x<2,
∴不等式组的解集为:1≤x<2,
故选:C.
【考点精析】认真审题,首先需要了解不等式的解集在数轴上的表示(不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向.规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈),还要掌握一元一次不等式组的解法(解法:①分别求出这个不等式组中各个不等式的解集;②利用数轴表示出各个不等式的解集;③找出公共部分;④用不等式表示出这个不等式组的解集.如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 ))的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.

(1)求证:AC是⊙O的切线;
(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;
(3)若CD=1,EH=3,求BF及AF长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC=°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在△ABC中,∠ABC=90,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D.E.F是垂足,且AB=17,BC=15,则OF、OE、OD的长度分别是( )

A. 2,2,2 B. 3,3,3 C. 4,4,4 D. 5,5,5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县为了落实中央的强基惠民工程计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成若乙队单独施工则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15那么余下的工程由甲队单独完成还需5

1)这项工程的规定时间是多少天?

2)已知甲队每天的施工费用为6500乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC的内切圆的三个切点分别为D、E、F,∠A=75°,∠B=45°,则圆心角∠EOF=度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某社区从2011年开始,组织全民健身活动,结合社区条件,开展了广场舞、太极拳、羽毛球和跑步四个活动项目,现将参加项目活动总人数进行统计,并绘制成每年参加总人数折线统计图和2015年各活动项目参与人数的扇形统计图,请你根据统计图解答下列题

(1)2015年比2011年增加人;
(2)请根据扇形统计图求出2015年参与跑步项目的人数;
(3)组织者预计2016年参与人员人数将比2015年的人数增加15%,名各活动项目参与人数的百分比与2016年相同,请根据以上统计结果,估计2016年参加太极拳的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题情境】

课外兴趣小组活动时,老师提出了如下问题:

如图①ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.

小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DEAD,连接BE.请根据小明的方法思考:

(1)由已知和作图能得到ADC≌△EDB,依据是

A.SSS B.SAS C.AAS D.HL

(2)由三角形的三边关系可求得AD的取值范围是

解后反思:题目中出现中点”、“中线等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.

【初步运用】

如图②ADABC的中线,BEACE,交ADF,且AEEF.若EF=3,EC=2,求线段BF的长.

【灵活运用】

如图③,在ABC中, A=90°,DBC中点, DEDFDEAB于点EDFAC于点F,连接EF.试猜想线段BE、CF、EF三者之间的等量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某同学在纸上画了四个点,如果把这四个点彼此连接,连成一个图形,则这个图形中会有_____个三角形出现.

查看答案和解析>>

同步练习册答案