精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,点C是以AB为直径的⊙O上一点,直线AC与过B点的切线相交于D,点EBD的中点,直线CE交直线AB于点F.

(1)求证:CF是⊙O的切线;

(2)ED=3,EF=5,求⊙O的半径.

【答案】(1)证明见解析;(2)6.

【解析】

(1)连CB、OC,根据切线的性质得∠ABD=90°,根据圆周角定理由AB是直径得到∠ACB=90°,即∠BCD=90°,则根据直角三角形斜边上的中线性质得CE=BE,于是得到∠OBC+∠CBE=∠OCB+∠BCE=90°,然后根据切线的判定定理得CF是⊙O的切线;
(2)CE=BE=DE=3,于是得到CF=CE+EF=4,然后根据相似三角形的性质即可得到结论.

(1)证明:连接

⊙O的切线,⊙O的直径,

.

.

.

的中点,

.

.

又∵

.

.

⊙O的切线.

(2)解:∵

,即⊙O的半径为6

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,已知直线y=﹣x+m与反比例函数y=的图象在第一象限内交于A、B两点(点A在点B的左侧),分别与x、y轴交于点C、D,AEx轴于E.

(1)若OECE=12,求k的值.

(2)如图2,作BFy轴于F,求证:EFCD.

(3)在(1)(2)的条件下,EF=, AB=2,Px轴正半轴上的一点,且PAB是以P为直角顶点的等腰直角三角形,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学完二次函数的图像及其性质后,老师让学生们说出的图像的一些性质,小亮说:“此函数图像开口向上,且对称轴是”;小丽说:“此函数肯定与x轴有两个交点”;小红说:“此函数与y轴的交点坐标为(0,-3)”;小强说:“此函数有最小值, ”……请问这四位同学谁说的结论是错误的(   )

A. 小亮 B. 小丽 C. 小红 D. 小强

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近几年杭州市推出了“微公交”,“微公交”是国内首创的纯电动汽车租赁服务.它作为一种绿色出行方式,对缓解交通堵塞和停车困难,改善城市大气环境,都可以起到积极作用.据了解某租赁点拥有“微公交”辆.据统计,当每辆车的年租金为千元时可全部租出;每辆车的年租金每增加千元,未租出的车将增加辆.

1)当每辆车的年租金定为千元时,能租出多少辆?

2)当每辆车的年租金增加多少千元时,租赁公司的年收益(不计车辆维护等其他费用)可达到千元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,点在第一象限,轴于轴于,有一反比例函数图象刚好过点

1)分别求出过点的反比例函数和过两点的一次函数的函数表达式;

2)直线轴,并从轴出发,以每秒个单位长度的速度向轴正方向运动,交反比例函数图象于点,交于点,交直线于点,当直线运动到经过点时,停止运动.设运动时间为(秒).

①问:是否存在的值,使四边形为平行四边形?若存在,求出的值;若不存在,说明理由;

②若直线轴出发的同时,有一动点从点出发,沿射线方向,以每秒个单位长度的速度运动.是否存在的值,使以点为顶点的四边形为平行四边形;若存在,求出的值,并进一步探究此时的四边形是否为特殊的平行四边形;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.

(1)当m取何值时,方程有两个不相等的实数根?

(2)设x1、x2是方程的两根,且(x1+x22﹣(x1+x2)﹣12=0,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+2x﹣1.

(1)写出它的顶点坐标;

(2)当x取何值时,yx的增大而增大;

(3)当x取何值时y的值大于0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图为一座抛物线型的拱桥ABCD分别表示两个不同位置的水面宽度O为拱桥顶部水面AB宽为10AB距桥顶O的高度为12.5水面上升2.5米到达警戒水位CD位置时水面宽为(  

A. 5 B. 2 C. 4 D. 8

查看答案和解析>>

同步练习册答案