【题目】已知线段AB,如果将线段AB绕点A逆时针旋转90°得到线段AC,则称点C为线段AB关于点A的逆转点.点C为线段AB关于点A的逆转点的示意图如图1:
(1)如图2,在正方形ABCD中,点_____为线段BC关于点B的逆转点;
(2)如图3,在平面直角坐标系xOy中,点P的坐标为(x,0),且x>0,点E是y轴上一点,点F是线段EO关于点E的逆转点,点G是线段EP关于点E的逆转点,过逆转点G,F的直线与x轴交于点H.
①补全图;
②判断过逆转点G,F的直线与x轴的位置关系并证明;
③若点E的坐标为(0,5),连接PF、PG,设△PFG的面积为y,直接写出y与x之间的函数关系式,并写出自变量x的取值范围.
【答案】(1)A;(2)①补图见解析;②GF⊥x轴;证明见解析;③y=.
【解析】
(1)根据点C为线段AB关于点A的逆转点的定义判断即可.
(2)①按题干定义补图即可.
②结论:GF⊥x轴.证明△GEF≌△PEO(SAS),推出∠GFE=∠EOP=90°可得结论.
③分两种情形:如图4﹣1中,当0<x<5时,如图4﹣2中,当x>5时,分别利用三角形的面积公式求解即可.
解:(1)由题意,点A是线段AB关于点B的逆转点,
故答案为A.
(2)①图形如图3所示.
②结论:GF⊥x轴.
理由:∵点F是线段EF关于点E的逆转点,点G是线段EP关于点E的逆转点,
∴∠OEF=∠PEG=90°,EG=EP,EF=EO,
∴∠GEF=∠PEO,
∴△GEF≌△PEO(SAS),
∴∠GFE=∠EOP,
∵OE⊥OP,
∴∠POE=90°,
∴∠GFE=90°,
∵∠OEF=∠EFH=∠EOH=90°,
∴四边形EFHO是矩形,
∴∠FHO=90°,
∴FG⊥x轴.
③如图4﹣1中,当0<x<5时,
∵E(0,5),
∴OE=5,
∵四边形EFHO是矩形,EF=EO,
∴四边形EFHO是正方形,
∴OH=OE=5,
∴y=FGPH=x(5﹣x)=﹣x2+x.
如图4﹣2中,当x>5时,
y=FGPH=x(x﹣5)=x2﹣x.
综上所述,y=.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE∥AB,EB∥CD,连接DE交BC于点O.
(1)求证:DE=BC;
(2)如果AC=5,,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC为等边三角形.
(1)求作:△ABC的外接圆⊙O.(不写作法,保留作图痕迹)
(2)射线AO交BC于点D,交⊙O于点E,过E作⊙O的切线EF,与AB的延长线交于点F.
①根据题意,将(1)中图形补全;
②求证:EF∥BC;
③若DE=2,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2+4ax+b(a>0)的顶点A在x轴上,与y轴交于点B.
(1)用含a的代数式表示b;
(2)若∠BAO=45°,求a的值;
(3)横、纵坐标都是整数的点叫做整点.若抛物线在点A,B之间的部分与线段AB所围成的区域(不含边界)内恰好没有整点,结合函数的图象,直接写出a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,∠B=∠C.以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.
(1)求证:DE与⊙O相切;
(2)延长DE交BA的延长线于点F,若AB=8,sinB=,求线段FA的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AM∥BC,且AC平分∠BAM.
(1)用尺规作∠ABC的平分线BD交AM于点D,连接CD.(只保留作图痕迹,不写作法)
(2)求证:四边形ABCD是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,△ABC是等边三角形.
(1)如图1,将线段AC绕点A逆时针旋转90°,得到AD,连接BD,∠BAC的平分线交BD于点E,连接CE.
①求∠AED的度数;
②用等式表示线段AE、CE、BD之间的数量关系(直接写出结果).
(2)如图2,将线段AC绕点A顺时针旋转90°,得到AD,连接BD,∠BAC的平分线交DB的延长线于点E,连接CE.
①依题意补全图2;
②用等式表示线段AE、CE、BD之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,抛物线yx2bxc与直线yx3分别交于x轴,y轴上的B,C两点,设该抛物线与x轴的另一个交点为A,顶点为D,连接CD交x轴于点E.
(1)求该抛物线的函数表达式;
(2)求该抛物线的对称轴和D点坐标;
(3)点F,G是对称轴上两个动点,且FG=2,点F在点G的上方,请直接写出四边形ACFG的周长的最小值;
(4)连接BD,若P在y轴上,且∠PBC=∠DBA+∠DCB,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,二次函数y=x2﹣2mx+1图象与y轴的交点为A,将点A向右平移4个单位长度得到点B.
(1)直接写出点A与点B的坐标;
(2)求出抛物线的对称轴(用含m的式子表示);
(3)若函数y=x2﹣2mx+1的图象与线段AB恰有一个公共点,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com