【题目】某同学使用计算器求10个数据的平均值时,错将其中一个数据20输入为10,结果得到平均数14,那么由此算出的方差与实际方差的差为________.
【答案】-1
【解析】
利用方差公式,计算方差,即可得出结论.
解:设弄错的数是第10个,设前9个数分别是x1,x2…,x9, 两个方差分别为S1和S2, 则:
S1=[(x1-14)2+(x2-14)2+…+(x9-14)2+(10-14)2],
S2= [(x1-15)2+(x2-15)2+…+(x9-15)2+(10-15)2],
两式相减得:
S1-S2=[(x1-14)2+(x2-14)2+…+(x9-14)2+(10-14)2]-[(x1-15)2+(x2-15)2+…+(x9-15)2+(10-15)2]
= [(x1-14)2-(x1-15)2+(x2-14)2-(x2-15)2+…+(x9-14)2-(x9-15)2+(16-25)]
= [2(x1+x2+…+x9)-29×9-9]
=(2×130-270)=-1.
故答案为:-1.
科目:初中数学 来源: 题型:
【题目】某工厂准备翻建新的大门,厂门要求设计成轴对称的拱形曲线.已知厂门的最大宽度AB=12m,最大高度OC=4m,工厂的运输卡车的高度是3m,宽度是5.8m.现设计了两种方案.方案一:建成抛物线形状(如图1);方案二:建成圆弧形状(如图2).为确保工厂的卡车在通过厂门时更安全,你认为应采用哪种设计方案?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于B、C两点,交y轴于点A.
(1)根据图象确定a,b,c的符号;
(2)如果OC=OA=OB,BC=4,求这个二次函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明在山脚下的A处测得山顶N的仰角为45°,此时,他刚好与山底D在同一水平线上.然后沿着坡度为30°的斜坡正对着山顶前行110米到达B处,测得山顶N的仰角为60°.求山的高度.(结果精确到1米,参考数据: ≈1.414, ≈1.732).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是由一些棱长为1的小立方块所搭几何体的三种视图.若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个长方体,至少还需要________个小立方块.最终搭成的长方体的表面积是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接并延长AE交CD于F,连接BD分别交CE、AF于G、H,下列结论:①∠CEH=45;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正确的结论是( )
A. ①②③ B. ①②④ C. ①②⑤ D. ②④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点F、C是⊙O上两点,且 = = ,连接AC、AF,过点C作CD⊥AF,交AF的延长线于点D,垂足为D,若CD=2 ,则⊙O的半径为( )
A. 2 B. 4 C. 2 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:
我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.
理解:
(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);
(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.
求证:BD是四边形ABCD的“相似对角线”;
(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为2,求FH的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com