精英家教网 > 初中数学 > 题目详情
16.已知A=2x2-3x+1,B=3x2+2x-4,求3A-2B.

分析 把A与B代入3A-2B中,去括号合并即可得到结果.

解答 解:∵A=2x2-3x+1,B=3x2+2x-4,
∴3A-2B=3(2x2-3x+1)-2(3x2+2x-4)=6x2-9x+3-6x2-4x+8=-13x+11.

点评 此题考查了整式的加减,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E.点B、E恰好是半圆弧的三等分点.若AD=4,则图中阴影部分的面积为$\frac{3\sqrt{3}}{2}$-$\frac{2π}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.为了了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类的喜爱,小李采用了抽样调查,在绘制扇形图时,由于时间仓促,还有足球、网球等信息还没有绘制完成,如图所示,根据图中的信息,这批被抽样调查的学生最喜欢足球的人数不可能是(  )
A.100人B.200人C.260人D.400人

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.化简:
(1)3x2+[2x-(-5x2+4x)+2]-1.
(2)y2+(x2+2xy-3y2)-(2x2-xy-2y2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:(-$\frac{1}{2}$)-2-16÷(-2)3+($\sqrt{3}$-2)0-$\sqrt{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图1,四边形ABCD中,AB∥CD,AB=a,CD=b(a≠b),点E、F分别是AD、BC上的点,且EF∥AB,设EF到CD、AB的距离分别为d1、d2
[初步尝试]
小亮同学在对这一图形进行研究时,发现如下事实:
(1)当$\frac{{d}_{1}}{{d}_{2}}$=$\frac{1}{1}$时,有EF=$\frac{a+b}{2}$;
(2)当$\frac{{d}_{1}}{{d}_{2}}$=$\frac{1}{2}$时,有EF=$\frac{a+2b}{3}$.
该同学思考研究(2)的过程如下:
作DG∥BC,交AB于G,作DM⊥AB于点M,交EF于点N.
显然HF=CD=b,AG=AB-CD=a-b.
易证,△DEH∽△DAG,可得$\frac{DN}{DM}$=$\frac{EH}{AG}$,
即,$\frac{{d}_{1}}{{d}_{1}{+d}_{2}}$=$\frac{EH}{a-b}$
而由$\frac{{d}_{1}}{{d}_{2}}$=$\frac{1}{2}$,得$\frac{{d}_{1}}{{d}_{1}{+d}_{2}}$=$\frac{1}{1+2}$=$\frac{1}{3}$,
代入上式,则$\frac{1}{3}$=$\frac{EH}{a-b}$.
解得EH=$\frac{1}{3}$(a-b)
∴EF=EH+HF=b+$\frac{1}{3}$(a-b)=$\frac{a+2b}{3}$
[类比发现]
沿用上述图形和已知条件,请自主完成进一步的研究发现:
当$\frac{{d}_{1}}{{d}_{2}}$=$\frac{2}{1}$时,EF=$\frac{2a+b}{3}$;
当$\frac{{d}_{1}}{{d}_{2}}$=$\frac{3}{1}$时,EF=$\frac{3a+b}{4}$;
当$\frac{{d}_{1}}{{d}_{2}}$=$\frac{1}{n}$时,EF=$\frac{a+nb}{n+1}$;
当$\frac{{d}_{1}}{{d}_{2}}$=$\frac{m}{1}$时,EF=$\frac{ma+b}{m+1}$.(其中m、n均为正整数,下同)
[推广证明]
当$\frac{{d}_{1}}{{d}_{2}}$=$\frac{m}{n}$时,EF=$\frac{ma+nb}{m+n}$;
请证明你的结论.
[实际应用]
请结合所给情景,创设一个需要采用下面的全部信息求解的问题.
[情景]
如图2,有一块四边形耕地ABCD,AD∥BC,AD=100米,BC=300米,AB=500米,在AB上取点E,使AE=200米,以点E处为起点开挖平行于两底的水渠EF,与CD边相交于点F.
[问题]
水渠EF的长为多少米?(提问即可,不必求解)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.重庆是一座美丽的山坡,某中学依山而建,校门A处,有一斜坡AB,长度为13米,在坡顶B处看教学楼CF的楼顶C的仰角∠CBF=53°,离B点4米远的E处有一花台,在E处仰望C的仰角∠CEF=63.4°,CF的延长线交校门处的水平面于D点,FD=5米.
(1)求斜坡AB的坡度i.
(2)求DC的长.
(参考数据:tan53°≈$\frac{4}{3}$,tan63.4°≈2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=2$\sqrt{3}$,直线y=$\sqrt{3}$x-2$\sqrt{3}$经过点C,交y轴于点G.
(1)求C,D坐标;
(2)已知抛物线顶点y=$\sqrt{3}$x-2$\sqrt{3}$上,且经过C,D,若抛物线与y交于点M连接MC,设点Q是线段下方此抛物线上一点,当点Q运动到什么位置时,△MCQ的面积最大?求出此时点Q的坐标和面积的最大值.
(3)将(2)中抛物线沿直线y=$\sqrt{3}$x-2$\sqrt{3}$平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧).平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.把下列函数化成y=a(x-h)2+k的形式,并指出抛物线的开口方向,顶点坐标和对称轴,然后再用描点法画出函数图象.
(1)y=2x2+8x+5;
(2)y=-3x2+6x.

查看答案和解析>>

同步练习册答案