精英家教网 > 初中数学 > 题目详情
6.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E.点B、E恰好是半圆弧的三等分点.若AD=4,则图中阴影部分的面积为$\frac{3\sqrt{3}}{2}$-$\frac{2π}{3}$.

分析 首先根据圆周角定理得出扇形半径以及圆周角度数,进而利用锐角三角函数关系得出BC,AC的长,利用S△ABC-S扇形BOE=图中阴影部分的面积求出即可

解答 解:连接BD,BE,BO,EO,
∵B,E是半圆弧的三等分点,
∴∠EOA=∠EOB=∠BOD=60°,
∴∠BAC=∠EBA=30°,
∴BE∥AD,
∵AD为⊙O直径,
∴∠ABD=90°,
∴AB=ADcos30°=2$\sqrt{3}$,
∴BC=$\frac{1}{2}$AB=$\sqrt{3}$,
∴AC=$\sqrt{A{B}^{2}-B{C}^{2}}$=3,
∴S△ABC=$\frac{1}{2}$×BC×AC=$\frac{1}{2}$×$\sqrt{3}$×3=$\frac{3\sqrt{3}}{2}$,
∵△BOE和△ABE同底等高,
∴△BOE和△ABE面积相等,
∴图中阴影部分的面积为:S△ABC-S扇形BOE=$\frac{3\sqrt{3}}{2}$-$\frac{60π×{2}^{2}}{360}$=$\frac{3\sqrt{3}}{2}$-$\frac{2π}{3}$.
故答案为:$\frac{3\sqrt{3}}{2}$-$\frac{2π}{3}$.

点评 此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出△BOE和△ABE面积相等是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.下列运算正确的是(  )
A.2a2•3a3=6a6B.2xa+xa=3x2a2C.(-2a)3=-6a3D.a5÷a4=a

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,已知点A(5$\sqrt{3}$,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b=5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.化简:$\frac{1}{2}$x-2(x-$\frac{1}{3}$y2)+(-$\frac{3}{2}$x+$\frac{1}{3}$y2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:
(1)9$\sqrt{45}$÷3$\sqrt{\frac{1}{5}}$×$\frac{3}{2}$$\sqrt{\frac{2}{3}}$
(2)|1-$\sqrt{2}$|+$\frac{1}{\sqrt{3}+\sqrt{2}}$+(π-$\sqrt{2}$)0
(3)2$\sqrt{\frac{1}{8}}$-$\sqrt{\frac{1}{2}}$-($\sqrt{18}$+$\sqrt{2}$-2$\sqrt{\frac{1}{3}}$)
(4)($\sqrt{5}$-$\sqrt{3}$+$\sqrt{2}$)($\sqrt{5}$+$\sqrt{3}$-$\sqrt{2}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在Rt△ABC中,∠ACB=90°,AC=2,BC=4.点D是线段BC上的一个动点.点D与点B、C不重合,过点D作DE⊥BC交AB于点E,将△ABC沿着直线DE翻折,使点B落在直线BC上的F点.
(1)设∠BAC=α(如图①),求∠AEF的大小;(用含α的代数式表示)
(2)当点F与点C重合时(如图②),求线段DE的长度;
(3)设BD=x,△EDF与△ABC重叠部分的面积为S,试求出S与x之间函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,二次函数y=x2+bx+c的图象经过A(1,0),B(-3,0)两点,与y轴交于点C,过点A的直线与y轴交干点D,与抛物线交于点M,且tan∠BAM=1.
(1)求该二次函数的解析式;
(2)若点Q在抛物线上,且S△QOC=4S△AOC,求点Q的坐标;
(3)P为抛物线上一动点,E为直线AD上一动点,是否存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知A=2x2-3x+1,B=3x2+2x-4,求3A-2B.

查看答案和解析>>

同步练习册答案